Cargando…
Prediction of Length of Hospital Stay of COVID-19 Patients Using Gradient Boosting Decision Tree
The aim of this paper is to predict the patient hospitalization time with coronavirus disease 2019 (COVID-19). It uses various data mining techniques, such as random forest. Many rules were derived by applying these techniques to the dataset. The extracted rules mainly were related to people over 55...
Autores principales: | Askari, GholamReza, Rouhani, Mohammad Hossein, Sattari, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507755/ https://www.ncbi.nlm.nih.gov/pubmed/36160183 http://dx.doi.org/10.1155/2022/6474883 |
Ejemplares similares
-
Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree
por: Li, Ke, et al.
Publicado: (2021) -
Length of Stay Prediction Model of Indoor Patients Based on Light Gradient Boosting Machine
por: Zeng, Xiangrui
Publicado: (2022) -
Machine learning-based prediction of hospital prolonged length of stay admission at emergency department: a Gradient Boosting algorithm analysis
por: Zeleke, Addisu Jember, et al.
Publicado: (2023) -
Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees
por: Almeida, Renan N. D., et al.
Publicado: (2022) -
Identification of cyclin protein using gradient boost decision tree algorithm
por: Zulfiqar, Hasan, et al.
Publicado: (2021)