Cargando…

A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites

Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize na...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zan, Zhang, Yin, Zhang, Zhibo, Cui, Yi-Tao, Guo, Qiang, Liu, Pan, Jin, Shenbao, Sha, Gang, Ding, Kunqing, Li, Zhiqiang, Fan, Tongxiang, Urbassek, Herbert M., Yu, Qian, Zhu, Ting, Zhang, Di, Wang, Y. Morris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508098/
https://www.ncbi.nlm.nih.gov/pubmed/36151199
http://dx.doi.org/10.1038/s41467-022-33261-5
_version_ 1784796946200788992
author Li, Zan
Zhang, Yin
Zhang, Zhibo
Cui, Yi-Tao
Guo, Qiang
Liu, Pan
Jin, Shenbao
Sha, Gang
Ding, Kunqing
Li, Zhiqiang
Fan, Tongxiang
Urbassek, Herbert M.
Yu, Qian
Zhu, Ting
Zhang, Di
Wang, Y. Morris
author_facet Li, Zan
Zhang, Yin
Zhang, Zhibo
Cui, Yi-Tao
Guo, Qiang
Liu, Pan
Jin, Shenbao
Sha, Gang
Ding, Kunqing
Li, Zhiqiang
Fan, Tongxiang
Urbassek, Herbert M.
Yu, Qian
Zhu, Ting
Zhang, Di
Wang, Y. Morris
author_sort Li, Zan
collection PubMed
description Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials.
format Online
Article
Text
id pubmed-9508098
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-95080982022-09-25 A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites Li, Zan Zhang, Yin Zhang, Zhibo Cui, Yi-Tao Guo, Qiang Liu, Pan Jin, Shenbao Sha, Gang Ding, Kunqing Li, Zhiqiang Fan, Tongxiang Urbassek, Herbert M. Yu, Qian Zhu, Ting Zhang, Di Wang, Y. Morris Nat Commun Article Nanograined metals have the merit of high strength, but usually suffer from low work hardening capacity and poor thermal stability, causing premature failure and limiting their practical utilities. Here we report a “nanodispersion-in-nanograins” strategy to simultaneously strengthen and stabilize nanocrystalline metals such as copper and nickel. Our strategy relies on a uniform dispersion of extremely fine sized carbon nanoparticles (2.6 ± 1.2 nm) inside nanograins. The intragranular dispersion of nanoparticles not only elevates the strength of already-strong nanograins by 35%, but also activates multiple hardening mechanisms via dislocation-nanoparticle interactions, leading to improved work hardening and large tensile ductility. In addition, these finely dispersed nanoparticles result in substantially enhanced thermal stability and electrical conductivity in metal nanocomposites. Our results demonstrate the concurrent improvement of several mutually exclusive properties in metals including strength-ductility, strength-thermal stability, and strength-electrical conductivity, and thus represent a promising route to engineering high-performance nanostructured materials. Nature Publishing Group UK 2022-09-23 /pmc/articles/PMC9508098/ /pubmed/36151199 http://dx.doi.org/10.1038/s41467-022-33261-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Zan
Zhang, Yin
Zhang, Zhibo
Cui, Yi-Tao
Guo, Qiang
Liu, Pan
Jin, Shenbao
Sha, Gang
Ding, Kunqing
Li, Zhiqiang
Fan, Tongxiang
Urbassek, Herbert M.
Yu, Qian
Zhu, Ting
Zhang, Di
Wang, Y. Morris
A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title_full A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title_fullStr A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title_full_unstemmed A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title_short A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
title_sort nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508098/
https://www.ncbi.nlm.nih.gov/pubmed/36151199
http://dx.doi.org/10.1038/s41467-022-33261-5
work_keys_str_mv AT lizan ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangyin ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangzhibo ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT cuiyitao ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT guoqiang ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT liupan ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT jinshenbao ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT shagang ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT dingkunqing ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT lizhiqiang ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT fantongxiang ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT urbassekherbertm ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT yuqian ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhuting ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangdi ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT wangymorris ananodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT lizan nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangyin nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangzhibo nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT cuiyitao nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT guoqiang nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT liupan nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT jinshenbao nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT shagang nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT dingkunqing nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT lizhiqiang nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT fantongxiang nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT urbassekherbertm nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT yuqian nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhuting nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT zhangdi nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites
AT wangymorris nanodispersioninnanograinsstrategyforultrastrongductileandstablemetalnanocomposites