Cargando…
The Impact of Nonrandom Missingness in Surveillance Data for Population-Level Summaries: Simulation Study
BACKGROUND: Surveillance data are essential public health resources for guiding policy and allocation of human and capital resources. These data often consist of large collections of information based on nonrandom sample designs. Population estimates based on such data may be impacted by the underly...
Autores principales: | Weiss, Paul Samuel, Waller, Lance Allyn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508670/ https://www.ncbi.nlm.nih.gov/pubmed/36083618 http://dx.doi.org/10.2196/37887 |
Ejemplares similares
-
Reading Profiles in Multi-Site Data With Missingness
por: Eckert, Mark A., et al.
Publicado: (2018) -
Bootstrap calibration of TRANSMIT for informative missingness of parental genotype data
por: Allen, Andrew S, et al.
Publicado: (2003) -
Ignoring Non-ignorable Missingness
por: Rabe-Hesketh, Sophia, et al.
Publicado: (2022) -
Much Ado About Missingness: A Demonstration of Full Information Maximum Likelihood Estimation to Address Missingness in Functional Magnetic Resonance Imaging Data
por: Nelson, Timothy D., et al.
Publicado: (2021) -
On Missingness Features in Machine Learning Models for Critical Care: Observational Study
por: Singh, Janmajay, et al.
Publicado: (2021)