Cargando…
CodnNet: A lightweight CNN architecture for detection of COVID-19 infection
The application of Convolutional Neural Network (CNN) on the detection of COVID-19 infection has yielded favorable results. However, with excessive model parameters, the CNN detection of COVID-19 is low in recall, highly complex in computation. In this paper, a novel lightweight CNN model, CodnNet i...
Autores principales: | Yang, Jingdong, Zhang, Lei, Tang, Xinjun, Han, Man |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508701/ https://www.ncbi.nlm.nih.gov/pubmed/36188336 http://dx.doi.org/10.1016/j.asoc.2022.109656 |
Ejemplares similares
-
CrodenseNet: An efficient parallel cross DenseNet for COVID-19 infection detection
por: Yang, Jingdong, et al.
Publicado: (2022) -
A Lightweight CNN Model Based on GhostNet
por: Wang, Zhong, et al.
Publicado: (2022) -
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
por: Alshazly, Hammam, et al.
Publicado: (2021) -
A Novel Lightweight CNN Architecture for the Diagnosis of Brain Tumors Using MR Images
por: Reddy, Kamireddy Rasool, et al.
Publicado: (2023) -
Anam-Net: Anamorphic Depth Embedding-Based Lightweight CNN for Segmentation of Anomalies in COVID-19 Chest CT Images
Publicado: (2021)