Cargando…
Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation
Nucleus–mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508833/ https://www.ncbi.nlm.nih.gov/pubmed/36095121 http://dx.doi.org/10.1093/nar/gkac735 |
_version_ | 1784797104544153600 |
---|---|
author | Hino, Yuko Nagaoka, Katsuya Oki, Shinya Etoh, Kan Hino, Shinjiro Nakao, Mitsuyoshi |
author_facet | Hino, Yuko Nagaoka, Katsuya Oki, Shinya Etoh, Kan Hino, Shinjiro Nakao, Mitsuyoshi |
author_sort | Hino, Yuko |
collection | PubMed |
description | Nucleus–mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions. |
format | Online Article Text |
id | pubmed-9508833 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-95088332022-09-26 Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation Hino, Yuko Nagaoka, Katsuya Oki, Shinya Etoh, Kan Hino, Shinjiro Nakao, Mitsuyoshi Nucleic Acids Res Gene regulation, Chromatin and Epigenetics Nucleus–mitochondria crosstalk is essential for cellular and organismal homeostasis. Although anterograde (nucleus-to-mitochondria) pathways have been well characterized, retrograde (mitochondria-to-nucleus) pathways remain to be clarified. Here, we found that mitochondrial dysfunction triggered a retrograde signaling via unique transcriptional and chromatin factors in hepatic cells. Our transcriptomic analysis revealed that the loss of mitochondrial transcription factor A led to mitochondrial dysfunction and dramatically induced expression of amphiregulin (AREG) and other secretory protein genes. AREG expression was also induced by various mitochondria stressors and was upregulated in murine liver injury models, suggesting that AREG expression is a hallmark of mitochondrial damage. Using epigenomic and informatic approaches, we identified that mitochondrial dysfunction-responsive enhancers of AREG gene were activated by c-JUN/YAP1/TEAD axis and were repressed by chromatin remodeler BRG1. Furthermore, while mitochondrial dysfunction-activated enhancers were enriched with JUN and TEAD binding motifs, the repressed enhancers possessed the binding motifs for hepatocyte nuclear factor 4α, suggesting that both stress responsible and cell type-specific enhancers were reprogrammed. Our study revealed that c-JUN and YAP1-mediated enhancer activation shapes the mitochondrial stress-responsive phenotype, which may shift from metabolism to stress adaptation including protein secretion under such stressed conditions. Oxford University Press 2022-09-12 /pmc/articles/PMC9508833/ /pubmed/36095121 http://dx.doi.org/10.1093/nar/gkac735 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Gene regulation, Chromatin and Epigenetics Hino, Yuko Nagaoka, Katsuya Oki, Shinya Etoh, Kan Hino, Shinjiro Nakao, Mitsuyoshi Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title | Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title_full | Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title_fullStr | Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title_full_unstemmed | Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title_short | Mitochondrial stress induces AREG expression and epigenomic remodeling through c-JUN and YAP-mediated enhancer activation |
title_sort | mitochondrial stress induces areg expression and epigenomic remodeling through c-jun and yap-mediated enhancer activation |
topic | Gene regulation, Chromatin and Epigenetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508833/ https://www.ncbi.nlm.nih.gov/pubmed/36095121 http://dx.doi.org/10.1093/nar/gkac735 |
work_keys_str_mv | AT hinoyuko mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation AT nagaokakatsuya mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation AT okishinya mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation AT etohkan mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation AT hinoshinjiro mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation AT nakaomitsuyoshi mitochondrialstressinducesaregexpressionandepigenomicremodelingthroughcjunandyapmediatedenhanceractivation |