Cargando…

Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases

Abortive infection (Abi) is a bacterial antiphage defense strategy involving suicide of the infected cell. Some Abi pathways involve polymerases that are related to reverse transcriptases. They are unique in the way they combine the ability to synthesize DNA in a template-independent manner with pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Figiel, Małgorzata, Gapińska, Marta, Czarnocki-Cieciura, Mariusz, Zajko, Weronika, Sroka, Małgorzata, Skowronek, Krzysztof, Nowotny, Marcin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508834/
https://www.ncbi.nlm.nih.gov/pubmed/36107766
http://dx.doi.org/10.1093/nar/gkac772
_version_ 1784797104784277504
author Figiel, Małgorzata
Gapińska, Marta
Czarnocki-Cieciura, Mariusz
Zajko, Weronika
Sroka, Małgorzata
Skowronek, Krzysztof
Nowotny, Marcin
author_facet Figiel, Małgorzata
Gapińska, Marta
Czarnocki-Cieciura, Mariusz
Zajko, Weronika
Sroka, Małgorzata
Skowronek, Krzysztof
Nowotny, Marcin
author_sort Figiel, Małgorzata
collection PubMed
description Abortive infection (Abi) is a bacterial antiphage defense strategy involving suicide of the infected cell. Some Abi pathways involve polymerases that are related to reverse transcriptases. They are unique in the way they combine the ability to synthesize DNA in a template-independent manner with protein priming. Here, we report crystal and cryo-electron microscopy structures of two Abi polymerases: AbiK and Abi-P2. Both proteins adopt a bilobal structure with an RT-like domain that comprises palm and fingers subdomains and a unique helical domain. AbiK and Abi-P2 adopt a hexameric and trimeric configuration, respectively, which is unprecedented for reverse transcriptases. Biochemical experiments showed that the formation of these oligomers is required for the DNA polymerization activity. The structure of the AbiK–DNA covalent adduct visualized interactions between the 3′ end of DNA and the active site and covalent attachment of the 5′ end of DNA to a tyrosine residue used for protein priming. Our data reveal a structural basis of the mechanism of highly unusual template-independent protein-priming polymerases.
format Online
Article
Text
id pubmed-9508834
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-95088342022-09-26 Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases Figiel, Małgorzata Gapińska, Marta Czarnocki-Cieciura, Mariusz Zajko, Weronika Sroka, Małgorzata Skowronek, Krzysztof Nowotny, Marcin Nucleic Acids Res Nucleic Acid Enzymes Abortive infection (Abi) is a bacterial antiphage defense strategy involving suicide of the infected cell. Some Abi pathways involve polymerases that are related to reverse transcriptases. They are unique in the way they combine the ability to synthesize DNA in a template-independent manner with protein priming. Here, we report crystal and cryo-electron microscopy structures of two Abi polymerases: AbiK and Abi-P2. Both proteins adopt a bilobal structure with an RT-like domain that comprises palm and fingers subdomains and a unique helical domain. AbiK and Abi-P2 adopt a hexameric and trimeric configuration, respectively, which is unprecedented for reverse transcriptases. Biochemical experiments showed that the formation of these oligomers is required for the DNA polymerization activity. The structure of the AbiK–DNA covalent adduct visualized interactions between the 3′ end of DNA and the active site and covalent attachment of the 5′ end of DNA to a tyrosine residue used for protein priming. Our data reveal a structural basis of the mechanism of highly unusual template-independent protein-priming polymerases. Oxford University Press 2022-09-15 /pmc/articles/PMC9508834/ /pubmed/36107766 http://dx.doi.org/10.1093/nar/gkac772 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Nucleic Acid Enzymes
Figiel, Małgorzata
Gapińska, Marta
Czarnocki-Cieciura, Mariusz
Zajko, Weronika
Sroka, Małgorzata
Skowronek, Krzysztof
Nowotny, Marcin
Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title_full Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title_fullStr Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title_full_unstemmed Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title_short Mechanism of protein-primed template-independent DNA synthesis by Abi polymerases
title_sort mechanism of protein-primed template-independent dna synthesis by abi polymerases
topic Nucleic Acid Enzymes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508834/
https://www.ncbi.nlm.nih.gov/pubmed/36107766
http://dx.doi.org/10.1093/nar/gkac772
work_keys_str_mv AT figielmałgorzata mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT gapinskamarta mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT czarnockicieciuramariusz mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT zajkoweronika mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT srokamałgorzata mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT skowronekkrzysztof mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases
AT nowotnymarcin mechanismofproteinprimedtemplateindependentdnasynthesisbyabipolymerases