Cargando…

Double-strand break toxicity is chromatin context independent

Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also fou...

Descripción completa

Detalles Bibliográficos
Autores principales: Friskes, Anoek, Koob, Lisa, Krenning, Lenno, Severson, Tesa M, Koeleman, Emma S, Vergara, Xabier, Schubert, Michael, van den Berg, Jeroen, Evers, Bastiaan, Manjón, Anna G, Joosten, Stacey, Kim, Yongsoo, Zwart, Wilbert, Medema, René H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508844/
https://www.ncbi.nlm.nih.gov/pubmed/36107780
http://dx.doi.org/10.1093/nar/gkac758
_version_ 1784797107398377472
author Friskes, Anoek
Koob, Lisa
Krenning, Lenno
Severson, Tesa M
Koeleman, Emma S
Vergara, Xabier
Schubert, Michael
van den Berg, Jeroen
Evers, Bastiaan
Manjón, Anna G
Joosten, Stacey
Kim, Yongsoo
Zwart, Wilbert
Medema, René H
author_facet Friskes, Anoek
Koob, Lisa
Krenning, Lenno
Severson, Tesa M
Koeleman, Emma S
Vergara, Xabier
Schubert, Michael
van den Berg, Jeroen
Evers, Bastiaan
Manjón, Anna G
Joosten, Stacey
Kim, Yongsoo
Zwart, Wilbert
Medema, René H
author_sort Friskes, Anoek
collection PubMed
description Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB.
format Online
Article
Text
id pubmed-9508844
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-95088442022-09-26 Double-strand break toxicity is chromatin context independent Friskes, Anoek Koob, Lisa Krenning, Lenno Severson, Tesa M Koeleman, Emma S Vergara, Xabier Schubert, Michael van den Berg, Jeroen Evers, Bastiaan Manjón, Anna G Joosten, Stacey Kim, Yongsoo Zwart, Wilbert Medema, René H Nucleic Acids Res Genome Integrity, Repair and Replication Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB. Oxford University Press 2022-09-15 /pmc/articles/PMC9508844/ /pubmed/36107780 http://dx.doi.org/10.1093/nar/gkac758 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Friskes, Anoek
Koob, Lisa
Krenning, Lenno
Severson, Tesa M
Koeleman, Emma S
Vergara, Xabier
Schubert, Michael
van den Berg, Jeroen
Evers, Bastiaan
Manjón, Anna G
Joosten, Stacey
Kim, Yongsoo
Zwart, Wilbert
Medema, René H
Double-strand break toxicity is chromatin context independent
title Double-strand break toxicity is chromatin context independent
title_full Double-strand break toxicity is chromatin context independent
title_fullStr Double-strand break toxicity is chromatin context independent
title_full_unstemmed Double-strand break toxicity is chromatin context independent
title_short Double-strand break toxicity is chromatin context independent
title_sort double-strand break toxicity is chromatin context independent
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508844/
https://www.ncbi.nlm.nih.gov/pubmed/36107780
http://dx.doi.org/10.1093/nar/gkac758
work_keys_str_mv AT friskesanoek doublestrandbreaktoxicityischromatincontextindependent
AT kooblisa doublestrandbreaktoxicityischromatincontextindependent
AT krenninglenno doublestrandbreaktoxicityischromatincontextindependent
AT seversontesam doublestrandbreaktoxicityischromatincontextindependent
AT koelemanemmas doublestrandbreaktoxicityischromatincontextindependent
AT vergaraxabier doublestrandbreaktoxicityischromatincontextindependent
AT schubertmichael doublestrandbreaktoxicityischromatincontextindependent
AT vandenbergjeroen doublestrandbreaktoxicityischromatincontextindependent
AT eversbastiaan doublestrandbreaktoxicityischromatincontextindependent
AT manjonannag doublestrandbreaktoxicityischromatincontextindependent
AT joostenstacey doublestrandbreaktoxicityischromatincontextindependent
AT kimyongsoo doublestrandbreaktoxicityischromatincontextindependent
AT zwartwilbert doublestrandbreaktoxicityischromatincontextindependent
AT medemareneh doublestrandbreaktoxicityischromatincontextindependent