Cargando…
Self-Attention Based Time-Rating-Aware Context Recommender System
The sequential recommendation can predict the user's next behavior according to the user's historical interaction sequence. To better capture users' preferences, some sequential recommendation models propose time-aware attention networks to capture users' long-term and short-term...
Autores principales: | Zha, Yongfu, Zhang, Yongjian, Liu, Zhixin, Dong, Yumin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509239/ https://www.ncbi.nlm.nih.gov/pubmed/36164426 http://dx.doi.org/10.1155/2022/9288902 |
Ejemplares similares
-
Real-Time Context-Aware Recommendation System for Tourism
por: Yoon, JunHo, et al.
Publicado: (2023) -
FIRE: knowledge-enhanced recommendation with feature interaction and intent-aware attention networks
por: Zhang, Ruoyi, et al.
Publicado: (2022) -
Semantic Modelling of Citation Contexts for Context-Aware Citation Recommendation
por: Saier, Tarek, et al.
Publicado: (2020) -
Individualized tourism recommendation based on self-attention
por: Liu, Guangjie, et al.
Publicado: (2022) -
Attention-Based Context Aware Network for Semantic Comprehension of Aerial Scenery
por: Shi, Weipeng, et al.
Publicado: (2021)