Cargando…
Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury
BACKGROUND: Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509243/ https://www.ncbi.nlm.nih.gov/pubmed/36164400 http://dx.doi.org/10.1155/2022/5748719 |
_version_ | 1784797194191110144 |
---|---|
author | Dai, Feng Tang, Tao Lu, Ruohuang Li, Pengfei Feng, Dandan Hu, Mingrui Wang, Yang Gan, Pingping |
author_facet | Dai, Feng Tang, Tao Lu, Ruohuang Li, Pengfei Feng, Dandan Hu, Mingrui Wang, Yang Gan, Pingping |
author_sort | Dai, Feng |
collection | PubMed |
description | BACKGROUND: Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properties against TBI. Transfer RNA (tRNA)-derived small RNAs, that is, tsRNAs (a group of small RNAs derived from tRNAs), are multifunctional regulatory noncoding RNAs generated under pressure and implicated in the progression of TBI. METHODS: A TBI model was successfully constructed using rats. We further performed sequencing and omics analyses to identify novel tsRNAs as drug targets for XFZYD therapy against TBI in the rat hippocampus. qPCR assays were used to further verify the experimental results. Gene Ontology (GO) was used to analyze the signaling pathways of downstream target genes of tsRNAs in the XFZYD-regulated TBI model. qPCR was used to detect the influence of overexpressed tsRNA mimics/inhibitors on their target genes in PC12 cells. RESULTS: Our RNA-Seq data illustrate that 11 tsRNAs were mediated by XFZYD. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway. We also confirmed that Pi4kb, Mlh3, Pcdh9, and Ppp1cb were target genes of 2 XFZYD-regulated tsRNAs in the hippocampus of a rat model and PC12 cells. Furthermore, biological function analysis revealed the potential therapeutic effects of tsRNAs, and the results showed that Mapk1 and Gnai1 were related genes for XFZYD therapy against TBI. CONCLUSION: Our work successfully illuminates the efficiency of XFZYD in the treatment of TBI. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway in a TBI rat model. |
format | Online Article Text |
id | pubmed-9509243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95092432022-09-25 Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury Dai, Feng Tang, Tao Lu, Ruohuang Li, Pengfei Feng, Dandan Hu, Mingrui Wang, Yang Gan, Pingping Evid Based Complement Alternat Med Research Article BACKGROUND: Traumatic brain injury (TBI) is one of the most common neurosurgical diseases and refers to brain function impairment or brain pathological changes induced by external causes. A traditional Chinese medicine, Xuefu-Zhuyu Decoction (XFZYD), has been indicated to harbor therapeutic properties against TBI. Transfer RNA (tRNA)-derived small RNAs, that is, tsRNAs (a group of small RNAs derived from tRNAs), are multifunctional regulatory noncoding RNAs generated under pressure and implicated in the progression of TBI. METHODS: A TBI model was successfully constructed using rats. We further performed sequencing and omics analyses to identify novel tsRNAs as drug targets for XFZYD therapy against TBI in the rat hippocampus. qPCR assays were used to further verify the experimental results. Gene Ontology (GO) was used to analyze the signaling pathways of downstream target genes of tsRNAs in the XFZYD-regulated TBI model. qPCR was used to detect the influence of overexpressed tsRNA mimics/inhibitors on their target genes in PC12 cells. RESULTS: Our RNA-Seq data illustrate that 11 tsRNAs were mediated by XFZYD. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway. We also confirmed that Pi4kb, Mlh3, Pcdh9, and Ppp1cb were target genes of 2 XFZYD-regulated tsRNAs in the hippocampus of a rat model and PC12 cells. Furthermore, biological function analysis revealed the potential therapeutic effects of tsRNAs, and the results showed that Mapk1 and Gnai1 were related genes for XFZYD therapy against TBI. CONCLUSION: Our work successfully illuminates the efficiency of XFZYD in the treatment of TBI. The experimental data revealed AS-tDR-002004 and AS-tDR-002583 as potential targets for XFZYD therapy and showed that they influenced TBI via the cadherin signaling pathway, cocaine addiction, circadian entrainment, and the nicotine pharmacodynamics pathway in a TBI rat model. Hindawi 2022-09-17 /pmc/articles/PMC9509243/ /pubmed/36164400 http://dx.doi.org/10.1155/2022/5748719 Text en Copyright © 2022 Feng Dai et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Dai, Feng Tang, Tao Lu, Ruohuang Li, Pengfei Feng, Dandan Hu, Mingrui Wang, Yang Gan, Pingping Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title | Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title_full | Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title_fullStr | Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title_full_unstemmed | Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title_short | Systematic Analysis of tRNA-Derived Small RNAs Reveals the Effects of Xuefu-Zhuyu Decoction on the Hippocampi of Rats after Traumatic Brain Injury |
title_sort | systematic analysis of trna-derived small rnas reveals the effects of xuefu-zhuyu decoction on the hippocampi of rats after traumatic brain injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509243/ https://www.ncbi.nlm.nih.gov/pubmed/36164400 http://dx.doi.org/10.1155/2022/5748719 |
work_keys_str_mv | AT daifeng systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT tangtao systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT luruohuang systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT lipengfei systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT fengdandan systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT humingrui systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT wangyang systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury AT ganpingping systematicanalysisoftrnaderivedsmallrnasrevealstheeffectsofxuefuzhuyudecoctiononthehippocampiofratsaftertraumaticbraininjury |