Cargando…

Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease

BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of...

Descripción completa

Detalles Bibliográficos
Autores principales: Mishra, Neha, Aden, Konrad, Blase, Johanna I., Baran, Nathan, Bordoni, Dora, Tran, Florian, Conrad, Claudio, Avalos, Diana, Jaeckel, Charlot, Scherer, Michael, Sørensen, Signe B., Overgaard, Silja H., Schulte, Berenice, Nikolaus, Susanna, Rey, Guillaume, Gasparoni, Gilles, Lyons, Paul A., Schultze, Joachim L., Walter, Jörn, Andersen, Vibeke, Dermitzakis, Emmanouil T., Schreiber, Stefan, Rosenstiel, Philip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509553/
https://www.ncbi.nlm.nih.gov/pubmed/36153599
http://dx.doi.org/10.1186/s13073-022-01112-z
_version_ 1784797249387102208
author Mishra, Neha
Aden, Konrad
Blase, Johanna I.
Baran, Nathan
Bordoni, Dora
Tran, Florian
Conrad, Claudio
Avalos, Diana
Jaeckel, Charlot
Scherer, Michael
Sørensen, Signe B.
Overgaard, Silja H.
Schulte, Berenice
Nikolaus, Susanna
Rey, Guillaume
Gasparoni, Gilles
Lyons, Paul A.
Schultze, Joachim L.
Walter, Jörn
Andersen, Vibeke
Dermitzakis, Emmanouil T.
Schreiber, Stefan
Rosenstiel, Philip
author_facet Mishra, Neha
Aden, Konrad
Blase, Johanna I.
Baran, Nathan
Bordoni, Dora
Tran, Florian
Conrad, Claudio
Avalos, Diana
Jaeckel, Charlot
Scherer, Michael
Sørensen, Signe B.
Overgaard, Silja H.
Schulte, Berenice
Nikolaus, Susanna
Rey, Guillaume
Gasparoni, Gilles
Lyons, Paul A.
Schultze, Joachim L.
Walter, Jörn
Andersen, Vibeke
Dermitzakis, Emmanouil T.
Schreiber, Stefan
Rosenstiel, Philip
author_sort Mishra, Neha
collection PubMed
description BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome. METHODS: We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint. RESULTS: We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients. CONCLUSIONS: Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01112-z.
format Online
Article
Text
id pubmed-9509553
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-95095532022-09-26 Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease Mishra, Neha Aden, Konrad Blase, Johanna I. Baran, Nathan Bordoni, Dora Tran, Florian Conrad, Claudio Avalos, Diana Jaeckel, Charlot Scherer, Michael Sørensen, Signe B. Overgaard, Silja H. Schulte, Berenice Nikolaus, Susanna Rey, Guillaume Gasparoni, Gilles Lyons, Paul A. Schultze, Joachim L. Walter, Jörn Andersen, Vibeke Dermitzakis, Emmanouil T. Schreiber, Stefan Rosenstiel, Philip Genome Med Research BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome. METHODS: We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint. RESULTS: We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients. CONCLUSIONS: Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-022-01112-z. BioMed Central 2022-09-24 /pmc/articles/PMC9509553/ /pubmed/36153599 http://dx.doi.org/10.1186/s13073-022-01112-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Mishra, Neha
Aden, Konrad
Blase, Johanna I.
Baran, Nathan
Bordoni, Dora
Tran, Florian
Conrad, Claudio
Avalos, Diana
Jaeckel, Charlot
Scherer, Michael
Sørensen, Signe B.
Overgaard, Silja H.
Schulte, Berenice
Nikolaus, Susanna
Rey, Guillaume
Gasparoni, Gilles
Lyons, Paul A.
Schultze, Joachim L.
Walter, Jörn
Andersen, Vibeke
Dermitzakis, Emmanouil T.
Schreiber, Stefan
Rosenstiel, Philip
Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title_full Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title_fullStr Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title_full_unstemmed Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title_short Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease
title_sort longitudinal multi-omics analysis identifies early blood-based predictors of anti-tnf therapy response in inflammatory bowel disease
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509553/
https://www.ncbi.nlm.nih.gov/pubmed/36153599
http://dx.doi.org/10.1186/s13073-022-01112-z
work_keys_str_mv AT mishraneha longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT adenkonrad longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT blasejohannai longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT barannathan longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT bordonidora longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT tranflorian longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT conradclaudio longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT avalosdiana longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT jaeckelcharlot longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT scherermichael longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT sørensensigneb longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT overgaardsiljah longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT schulteberenice longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT nikolaussusanna longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT reyguillaume longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT gasparonigilles longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT lyonspaula longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT schultzejoachiml longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT walterjorn longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT andersenvibeke longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT dermitzakisemmanouilt longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT schreiberstefan longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease
AT rosenstielphilip longitudinalmultiomicsanalysisidentifiesearlybloodbasedpredictorsofantitnftherapyresponseininflammatoryboweldisease