Cargando…
Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting
The long duration of the COVID-19 pandemic allowed for multiple bursts in the infection and death rates, the so-called epidemic waves. This complex behavior is no longer tractable by simple compartmental model and requires more sophisticated mathematical techniques for analyzing epidemic data and ge...
Autores principales: | Valeriano, João Pedro, Cintra, Pedro Henrique, Libotte, Gustavo, Reis, Igor, Fontinele, Felipe, Silva, Renato, Malta, Sandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510304/ https://www.ncbi.nlm.nih.gov/pubmed/36188164 http://dx.doi.org/10.1007/s11071-022-07865-x |
Ejemplares similares
-
Bayesian sequential data assimilation for COVID-19 forecasting
por: Daza-Torres, Maria L., et al.
Publicado: (2022) -
A Bayesian predictive analytics model for improving long range epidemic forecasting during an infection wave
por: da Costa Avelar, Pedro Henrique, et al.
Publicado: (2022) -
Informative and adaptive distances and summary statistics in sequential approximate Bayesian computation
por: Schälte, Yannik, et al.
Publicado: (2023) -
Forecasting Multi-Wave Epidemics Through Bayesian Inference
por: Blonigan, Patrick, et al.
Publicado: (2021) -
Sequential Bayesian Inference for Detection and Response to Seasonal Epidemics
por: Ludkovski, Michael, et al.
Publicado: (2013)