Cargando…
Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning
BACKGROUND: Most studies of molecular subtype prediction in breast cancer were mainly based on two-dimensional MRI images, the predictive value of three-dimensional volumetric features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting breast cancer molecular subtypes...
Autores principales: | Sheng, Weiyong, Xia, Shouli, Wang, Yaru, Yan, Lizhao, Ke, Songqing, Mellisa, Evelyn, Gong, Fen, Zheng, Yun, Tang, Tiansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510620/ https://www.ncbi.nlm.nih.gov/pubmed/36172153 http://dx.doi.org/10.3389/fonc.2022.964605 |
Ejemplares similares
-
Intra- and Peritumoral Radiomics Model Based on Early DCE-MRI for Preoperative Prediction of Molecular Subtypes in Invasive Ductal Breast Carcinoma: A Multitask Machine Learning Study
por: Zhang, Shuhai, et al.
Publicado: (2022) -
Development and validation of an MRI-radiomics nomogram for the prognosis of pancreatic ductal adenocarcinoma
por: Xu, Xinsen, et al.
Publicado: (2023) -
Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma
por: Sun, Chen, et al.
Publicado: (2022) -
Comparison of Radiomic Features in a Diverse Cohort of Patients With Pancreatic Ductal Adenocarcinomas
por: Permuth, Jennifer B., et al.
Publicado: (2021) -
Radiomics-Based Features for Prediction of Histological Subtypes in Central Lung Cancer
por: Li, Huanhuan, et al.
Publicado: (2021)