Cargando…

A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum

Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant grow...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Dan, Yang, Lin, Gu, Jiahua, Tarkowska, Danuse, Deng, Xiangzi, Gan, Qinhua, Zhou, Wenxu, Strnad, Miroslav, Lu, Yandu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510744/
https://www.ncbi.nlm.nih.gov/pubmed/36172550
http://dx.doi.org/10.3389/fpls.2022.927200
_version_ 1784797507436412928
author Wu, Dan
Yang, Lin
Gu, Jiahua
Tarkowska, Danuse
Deng, Xiangzi
Gan, Qinhua
Zhou, Wenxu
Strnad, Miroslav
Lu, Yandu
author_facet Wu, Dan
Yang, Lin
Gu, Jiahua
Tarkowska, Danuse
Deng, Xiangzi
Gan, Qinhua
Zhou, Wenxu
Strnad, Miroslav
Lu, Yandu
author_sort Wu, Dan
collection PubMed
description Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.
format Online
Article
Text
id pubmed-9510744
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-95107442022-09-27 A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum Wu, Dan Yang, Lin Gu, Jiahua Tarkowska, Danuse Deng, Xiangzi Gan, Qinhua Zhou, Wenxu Strnad, Miroslav Lu, Yandu Front Plant Sci Plant Science Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response. Frontiers Media S.A. 2022-09-12 /pmc/articles/PMC9510744/ /pubmed/36172550 http://dx.doi.org/10.3389/fpls.2022.927200 Text en Copyright © 2022 Wu, Yang, Gu, Tarkowska, Deng, Gan, Zhou, Strnad and Lu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Wu, Dan
Yang, Lin
Gu, Jiahua
Tarkowska, Danuse
Deng, Xiangzi
Gan, Qinhua
Zhou, Wenxu
Strnad, Miroslav
Lu, Yandu
A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title_full A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title_fullStr A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title_full_unstemmed A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title_short A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum
title_sort functional genomics view of gibberellin metabolism in the cnidarian symbiont breviolum minutum
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510744/
https://www.ncbi.nlm.nih.gov/pubmed/36172550
http://dx.doi.org/10.3389/fpls.2022.927200
work_keys_str_mv AT wudan afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT yanglin afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT gujiahua afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT tarkowskadanuse afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT dengxiangzi afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT ganqinhua afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT zhouwenxu afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT strnadmiroslav afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT luyandu afunctionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT wudan functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT yanglin functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT gujiahua functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT tarkowskadanuse functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT dengxiangzi functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT ganqinhua functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT zhouwenxu functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT strnadmiroslav functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum
AT luyandu functionalgenomicsviewofgibberellinmetabolisminthecnidariansymbiontbreviolumminutum