Cargando…
A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth
Recent years have seen an increase in the application of machine learning to the analysis of physical and biological systems, including cancer progression. A fundamental downside to these tools is that their complexity and nonlinearity makes it almost impossible to establish a deterministic, a prior...
Autores principales: | Coggan, Helena, Andres Terre, Helena, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510846/ https://www.ncbi.nlm.nih.gov/pubmed/36172548 http://dx.doi.org/10.3389/fdata.2022.941451 |
Ejemplares similares
-
Editorial: Human-Interpretable Machine Learning
por: Tolomei, Gabriele, et al.
Publicado: (2022) -
Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach
por: Kolyshkina, Inna, et al.
Publicado: (2021) -
A machine learning approach to quantify gender bias in collaboration practices of mathematicians
por: Steinfeldt, Christian, et al.
Publicado: (2023) -
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
por: Bodnar, Cristian, et al.
Publicado: (2021) -
Teeport: Break the Wall Between the Optimization Algorithms and Problems
por: Zhang, Zhe, et al.
Publicado: (2021)