Cargando…

Rutaecarpine prevents the malignant biological properties of breast cancer cells by the miR-149-3p/S100A4 axis

BACKGROUND: Breast cancer (BC) is a frequent malignancy that endangers women’s health, and its fatality rate ranks 1st among female malignancies. Research has shown that rutaecarpine (RUT), which is a Chinese herbal medicine, blocks the proliferation of cancer cells by a variety of molecular mechani...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Yi, Xiong, Chao, Li, Peng, Shan, Xuehua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511192/
https://www.ncbi.nlm.nih.gov/pubmed/36172090
http://dx.doi.org/10.21037/atm-22-3765
Descripción
Sumario:BACKGROUND: Breast cancer (BC) is a frequent malignancy that endangers women’s health, and its fatality rate ranks 1st among female malignancies. Research has shown that rutaecarpine (RUT), which is a Chinese herbal medicine, blocks the proliferation of cancer cells by a variety of molecular mechanisms. However, the possible effects and mechanism of RUT in the autophagy and angiogenesis of BC cells has not been clearly articulated. METHODS: MiR-149-3p and S100A4 expression levels were assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the optimal concentration and time of RUT was confirmed by Cell Counting Kit-8 (CCK-8) assays of the BC cells. After treatment, changes in cell proliferation and the cell cycle were evaluated by CCK-8 assays, clone formation assays, and flow cytometry, and the levels of apoptosis, autophagy, and angiogenesis-related proteins were identified by Western blot. The targeted regulation of miR-149-3p on S100A4 was also examined by luciferase reporter assays. RESULTS: We found that RUT inhibited cell growth and upregulated miR-149-3p in MDA-MB-231 cells. In relation to the biological function activity, RUT attenuated proliferation and angiogenesis, and induced cell-cycle arrest and autophagy by miR-149-3p in the MDA-MB-231 cells. Additionally, miR-149-3p downregulated S100A4 by targeting binding to S100A4, and S100A4 was required for miR-149-3p to play a role in BC progression. We also discovered that an autophagy agonist (rapamycin) or an angiogenesis inhibitor (TNP-470) changed BC progression mediated by the RUT/miR-149-3p/S100A4 axis. CONCLUSIONS: RUT blocks the malignant behaviors of BC cells through the miR-149-3p/S100A4 axis and thus alters autophagy and angiogenesis. Thus, the RUT-mediated miR-149-3p/S100A4 axis might be an underlying therapeutic agent and target for BC.