Cargando…
Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
Sanitary sewer overflows caused by excessive rainfall derived infiltration and inflow is the major challenge currently faced by municipal administrations, and therefore, the ability to correctly predict the wastewater state of the sanitary sewage system in advance is especially significant. In this...
Autores principales: | Huang, Jianying, Yang, Seunghyeok, Li, Jinhui, Oh, Jeill, Kang, Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511464/ https://www.ncbi.nlm.nih.gov/pubmed/36188335 http://dx.doi.org/10.1007/s11227-022-04827-3 |
Ejemplares similares
-
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019) -
Pedestrian Stride-Length Estimation Based on LSTM and Denoising Autoencoders
por: Wang, Qu, et al.
Publicado: (2019) -
Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe
por: Ibrahim, Mohamed R., et al.
Publicado: (2021) -
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism
por: Casabianca, Pietro, et al.
Publicado: (2021)