Cargando…
SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning
BACKGROUND: In cancer research, high-throughput screening technologies produce large amounts of multiomics data from different populations and cell types. However, analysis of such data encounters difficulties due to disease heterogeneity, further exacerbated by human biological complexity and genom...
Autores principales: | Preto, António J, Matos-Filipe, Pedro, Mourão, Joana, Moreira, Irina S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511701/ https://www.ncbi.nlm.nih.gov/pubmed/36155782 http://dx.doi.org/10.1093/gigascience/giac087 |
Ejemplares similares
-
MENSAdb: a thorough structural analysis of membrane protein dimers
por: Matos-Filipe, Pedro, et al.
Publicado: (2021) -
How reliable are MEG resting-state connectivity metrics?
por: Colclough, G.L., et al.
Publicado: (2016) -
Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics
por: Sagawa, Hajime, et al.
Publicado: (2020) -
Using Hexoskin Wearable Technology to Obtain Body Metrics During Trail Hiking
por: MONTES, JEFF, et al.
Publicado: (2015) -
Quality assessment metrics for whole genome gene expression profiling of paraffin embedded samples
por: Mahoney, Douglas W, et al.
Publicado: (2013)