Cargando…
AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning
BACKGROUND: Deep learning’s automatic feature extraction has proven to give superior performance in many sequence classification tasks. However, deep learning models generally require a massive amount of data to train, which in the case of Hemolytic Activity Prediction of Antimicrobial Peptides crea...
Autores principales: | Salem, Milad, Keshavarzi Arshadi, Arash, Yuan, Jiann Shiun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511757/ https://www.ncbi.nlm.nih.gov/pubmed/36163001 http://dx.doi.org/10.1186/s12859-022-04952-z |
Ejemplares similares
-
MolData, a molecular benchmark for disease and target based machine learning
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2022) -
DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2020) -
Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development
por: Keshavarzi Arshadi, Arash, et al.
Publicado: (2020) -
Machine learning designs non-hemolytic antimicrobial peptides
por: Capecchi, Alice, et al.
Publicado: (2021) -
Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models
por: Lobo, Fernando, et al.
Publicado: (2023)