Cargando…

Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches

BACKGROUND: Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mechanism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the molecular mechanisms for the progression of DN through integrated bioinf...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Haiyan, Rao, Xiaosheng, Jia, Junya, Yan, Tiekun, Li, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511769/
https://www.ncbi.nlm.nih.gov/pubmed/36154667
http://dx.doi.org/10.1186/s41065-022-00249-6
Descripción
Sumario:BACKGROUND: Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. The mechanism of tubulointerstitial lesions in DN is not fully elucidated. This article aims to identify novel genes and clarify the molecular mechanisms for the progression of DN through integrated bioinformatics approaches. METHOD: We downloaded microarray datasets from Gene Expression Omnibus (GEO) database and identified the differentially expressed genes (DEGs). Enrichment analyses, construction of Protein–protein interaction (PPI) network, and visualization of the co-expressed network between mRNAs and microRNAs (miRNAs) were performed. Additionally, we validated the expression of hub genes and analyzed the Receiver Operating Characteristic (ROC) curve in another GEO dataset. Clinical analysis and ceRNA networks were further analyzed. RESULTS: Totally 463 DEGs were identified, and enrichment analyses demonstrated that extracellular matrix structural constituents, regulation of immune effector process, positive regulation of cytokine production, phagosome, and complement and coagulation cascades were the major enriched pathways in DN. Three hub genes (CD53, CSF2RB, and LAPTM5) were obtained, and their expression levels were validated by GEO datasets. Pearson analysis showed that these genes were negatively correlated with the glomerular filtration rate (GFR). After literature searching, the ceRNA networks among circRNAs/IncRNAs, miRNAs, and mRNAs were constructed. The predicted RNA pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB provides an important perspective and insights into the molecular mechanism of DN. CONCLUSION: In conclusion, we identified three genes, namely CD53, CSF2RB, and LAPTM5, as hub genes of tubulointerstitial lesions in DN. They may be closely related to the pathogenesis of DN and the predicted RNA regulatory pathway of NEAT1/XIST-hsa-miR-155-5p/hsa-miR-486-5p-CSF2RB presents a biomarker axis to the occurrence and development of DN.