Cargando…
MRF-Net: A multi-branch residual fusion network for fast and accurate whole-brain MRI segmentation
Whole-brain segmentation from T1-weighted magnetic resonance imaging (MRI) is an essential prerequisite for brain structural analysis, e.g., locating morphometric changes for brain aging analysis. Traditional neuroimaging analysis pipelines are implemented based on registration methods, which involv...
Autores principales: | Wei, Chong, Yang, Yanwu, Guo, Xutao, Ye, Chenfei, Lv, Haiyan, Xiang, Yang, Ma, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512011/ https://www.ncbi.nlm.nih.gov/pubmed/36172041 http://dx.doi.org/10.3389/fnins.2022.940381 |
Ejemplares similares
-
MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net
por: Jiang, Yongchao, et al.
Publicado: (2022) -
Ensemble learning via supervision augmentation for white matter hyperintensity segmentation
por: Guo, Xutao, et al.
Publicado: (2022) -
Multiple Receptive Field Network (MRF-Net) for Autonomous Underwater Vehicle Fishing Net Detection Using Forward-Looking Sonar Images
por: Qin, Rixia, et al.
Publicado: (2021) -
LBTS‐Net: A fast and accurate CNN model for brain tumour segmentation
por: Abdullah, Mohammed A. M., et al.
Publicado: (2021) -
DTS-Net: Depth-to-Space Networks for Fast and Accurate Semantic Object Segmentation
por: Ibrahem, Hatem, et al.
Publicado: (2022)