Cargando…
Radiation-induced Cell Death and Its Mechanisms
With rapid technical advances, ionizing radiation has been put into wider application in ordinary living, with the worst cytological effect on the human body being cell death. Moreover, according to the Nomenclature Committee on Cell Death, the method of radiation-induced cell death, usually classif...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512240/ https://www.ncbi.nlm.nih.gov/pubmed/36069830 http://dx.doi.org/10.1097/HP.0000000000001601 |
_version_ | 1784797810651037696 |
---|---|
author | Jiao, Yunfei Cao, Fangyu Liu, Hu |
author_facet | Jiao, Yunfei Cao, Fangyu Liu, Hu |
author_sort | Jiao, Yunfei |
collection | PubMed |
description | With rapid technical advances, ionizing radiation has been put into wider application in ordinary living, with the worst cytological effect on the human body being cell death. Moreover, according to the Nomenclature Committee on Cell Death, the method of radiation-induced cell death, usually classified as interphase and proliferative death, undergoes more detailed classifications oriented by its molecular mechanism. Elaborating its mode and molecular mechanism is crucial for the protection and treatment of radiation injury, as well as the radiotherapy and recovery of tumors. Varying with the changes of the radiation dose and the environment, the diverse targets and pathways of ionizing radiation result in various cell deaths. This review focuses on classifications of radiation-induced cell death and its molecular mechanism. We also examine the main characteristics of ionizing radiation-induced cell death. The modes of radiation-induced cell death can be classified as apoptosis, necrosis, autophagy-dependent cell death, pyroptosis, ferroptosis, immunogenic cell death, and non-lethal processes. Once the dose is high enough, radiation effects mostly appear as destructiveness (“destructiveness” is used to describe a situation in which cells do not have the opportunity to undergo a routine death process, in which case high-dose radiation works like a physical attack). This breaks up or even shatters cells, making it difficult to find responses of the cell itself. Due to diversities concerning cell phenotypes, phases of cell cycle, radiation dose, and even cellular subregions, various methods of cell death occur, which are difficult to identify and classify. Additionally, the existence of common initial activation and signaling molecules among all kinds of cell deaths, as well as sophisticated crossways in cellular molecules, makes it more laborious to distinguish and classify various cell deaths. |
format | Online Article Text |
id | pubmed-9512240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-95122402022-10-03 Radiation-induced Cell Death and Its Mechanisms Jiao, Yunfei Cao, Fangyu Liu, Hu Health Phys Review Papers With rapid technical advances, ionizing radiation has been put into wider application in ordinary living, with the worst cytological effect on the human body being cell death. Moreover, according to the Nomenclature Committee on Cell Death, the method of radiation-induced cell death, usually classified as interphase and proliferative death, undergoes more detailed classifications oriented by its molecular mechanism. Elaborating its mode and molecular mechanism is crucial for the protection and treatment of radiation injury, as well as the radiotherapy and recovery of tumors. Varying with the changes of the radiation dose and the environment, the diverse targets and pathways of ionizing radiation result in various cell deaths. This review focuses on classifications of radiation-induced cell death and its molecular mechanism. We also examine the main characteristics of ionizing radiation-induced cell death. The modes of radiation-induced cell death can be classified as apoptosis, necrosis, autophagy-dependent cell death, pyroptosis, ferroptosis, immunogenic cell death, and non-lethal processes. Once the dose is high enough, radiation effects mostly appear as destructiveness (“destructiveness” is used to describe a situation in which cells do not have the opportunity to undergo a routine death process, in which case high-dose radiation works like a physical attack). This breaks up or even shatters cells, making it difficult to find responses of the cell itself. Due to diversities concerning cell phenotypes, phases of cell cycle, radiation dose, and even cellular subregions, various methods of cell death occur, which are difficult to identify and classify. Additionally, the existence of common initial activation and signaling molecules among all kinds of cell deaths, as well as sophisticated crossways in cellular molecules, makes it more laborious to distinguish and classify various cell deaths. Lippincott Williams & Wilkins 2022-11 2022-09-06 /pmc/articles/PMC9512240/ /pubmed/36069830 http://dx.doi.org/10.1097/HP.0000000000001601 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Health Physics Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Review Papers Jiao, Yunfei Cao, Fangyu Liu, Hu Radiation-induced Cell Death and Its Mechanisms |
title | Radiation-induced Cell Death and Its Mechanisms |
title_full | Radiation-induced Cell Death and Its Mechanisms |
title_fullStr | Radiation-induced Cell Death and Its Mechanisms |
title_full_unstemmed | Radiation-induced Cell Death and Its Mechanisms |
title_short | Radiation-induced Cell Death and Its Mechanisms |
title_sort | radiation-induced cell death and its mechanisms |
topic | Review Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512240/ https://www.ncbi.nlm.nih.gov/pubmed/36069830 http://dx.doi.org/10.1097/HP.0000000000001601 |
work_keys_str_mv | AT jiaoyunfei radiationinducedcelldeathanditsmechanisms AT caofangyu radiationinducedcelldeathanditsmechanisms AT liuhu radiationinducedcelldeathanditsmechanisms |