Cargando…
Machine learning for contour classification in TG‐263 noncompliant databases
A large volume of medical data are labeled using nonstandardized nomenclature. Although efforts have been made by the American Association of Physicists in Medicine (AAPM) to standardize nomenclature through Task Group 263 (TG‐263), there remain noncompliant databases. This work aims to create an al...
Autores principales: | Livermore, David, Trappenberg, Thomas, Syme, Alasdair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512347/ https://www.ncbi.nlm.nih.gov/pubmed/35686988 http://dx.doi.org/10.1002/acm2.13662 |
Ejemplares similares
-
Clinical assessment of a novel machine‐learning automated contouring tool for radiotherapy planning
por: Hu, Yunfei, et al.
Publicado: (2023) -
Investigating the impacts of intrafraction motion on dosimetric outcomes when treating small targets with virtual cones
por: Church, Cody, et al.
Publicado: (2021) -
Region‐of‐interest intra‐arc MV imaging to facilitate sub‐mm positional accuracy with minimal imaging dose during treatment deliveries of small cranial lesions
por: Church, Cody, et al.
Publicado: (2022) -
Comparison of the recommendations of the AAPM TG‐51 and TG‐51 addendum reference dosimetry protocols
por: McCaw, Travis J., et al.
Publicado: (2017) -
Feasibility evaluation of novel AI‐based deep‐learning contouring algorithm for radiotherapy
por: Maduro Bustos, Luis A., et al.
Publicado: (2023)