Cargando…
Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network
PURPOSE: Contouring clinical target volume (CTV) from medical images is an essential step for radiotherapy (RT) planning. Magnetic resonance imaging (MRI) is used as a standard imaging modality for CTV segmentation in cervical cancer due to its superior soft‐tissue contrast. However, the delineation...
Autores principales: | Zabihollahy, Fatemeh, Viswanathan, Akila N., Schmidt, Ehud J., Lee, Junghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512359/ https://www.ncbi.nlm.nih.gov/pubmed/35894782 http://dx.doi.org/10.1002/acm2.13725 |
Ejemplares similares
-
Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
por: Ye, Yufeng, et al.
Publicado: (2020) -
Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks
por: Zhang, Daguang, et al.
Publicado: (2020) -
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
por: Sadeghi, Sogand, et al.
Publicado: (2023) -
Fully automated condyle segmentation using 3D convolutional neural networks
por: Jha, Nayansi, et al.
Publicado: (2022) -
A study of positioning orientation effect on segmentation accuracy using convolutional neural networks for rectal cancer
por: Men, Kuo, et al.
Publicado: (2018)