Cargando…
Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture
Foreground detection is a classic video processing task, widely used in video surveillance and other fields, and is the basic step of many computer vision tasks. The scene in the real world is complex and changeable, and it is difficult for traditional unsupervised methods to accurately extract fore...
Autores principales: | Liu, Peng, Feng, Junying, Sang, Jianli, Kim, Yong Kwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512601/ https://www.ncbi.nlm.nih.gov/pubmed/36172321 http://dx.doi.org/10.1155/2022/7432615 |
Ejemplares similares
-
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022) -
Performance analysis of U-Net with hybrid loss for foreground detection
por: Kalsotra, Rudrika, et al.
Publicado: (2022) -
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021) -
Spatio-Temporal Attention Model for Foreground Detection in Cross-Scene Surveillance Videos
por: Liang, Dong, et al.
Publicado: (2019)