Cargando…

Implementation of Trusted Traceability Query Using Blockchain and Deep Reinforcement Learning in Resource Management

To better track the source of goods and maintain the quality of goods, the present work uses blockchain technology to establish a system for trusted traceability queries and information management. Primarily, the analysis is made on the shortcomings of the traceability system in the field of agricul...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yunting, Lei, Yalin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512612/
https://www.ncbi.nlm.nih.gov/pubmed/36172315
http://dx.doi.org/10.1155/2022/6559517
Descripción
Sumario:To better track the source of goods and maintain the quality of goods, the present work uses blockchain technology to establish a system for trusted traceability queries and information management. Primarily, the analysis is made on the shortcomings of the traceability system in the field of agricultural products at the present stage; the study is conducted on the application of the traceability system to blockchain technology, and a new model of agricultural product traceability system is established based on the blockchain technology. Then, a study is carried out on the task scheduling problem of resource clusters in cloud computing resource management. The present work expands the task model and uses the deep Q network algorithm in deep reinforcement learning to solve various optimization objectives preset in the task scheduling problem. Next, a resource management algorithm based on a deep Q network is proposed. Finally, the performance of the algorithm is analyzed from the aspects of parameters, structure, and task load. Experiments show that the algorithm is better than Shortest Job First (SJF), Tetris(∗), Packer, and other classic task scheduling algorithms in different optimization objectives. In the traceability system test, the traceability accuracy is 99% for the constructed system in the first group of samples. In the second group, the traceability accuracy reaches 98% for the constructed system. In general, the traceability accuracy of the system proposed here is above 98% in 8 groups of experimental samples, and the traceability accuracy is close for each experimental group. The resource management approach of the traceability system constructed here provides some ideas for the application of reinforcement learning technology in the construction of traceability systems.