Cargando…
Design principles to assemble drug combinations for effective tuberculosis therapy using interpretable pairwise drug response measurements
A challenge in tuberculosis treatment regimen design is the necessity to combine three or more antibiotics. We narrow the prohibitively large search space by breaking down high-order drug combinations into drug pair units. Using pairwise in vitro measurements, we train machine learning models to pre...
Autores principales: | Larkins-Ford, Jonah, Degefu, Yonatan N., Van, Nhi, Sokolov, Artem, Aldridge, Bree B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512659/ https://www.ncbi.nlm.nih.gov/pubmed/36084643 http://dx.doi.org/10.1016/j.xcrm.2022.100737 |
Ejemplares similares
-
Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis
por: Larkins-Ford, Jonah, et al.
Publicado: (2021) -
Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus
por: Van, Nhi, et al.
Publicado: (2023) -
Efficient measurement and factorization of high-order drug interactions in Mycobacterium tuberculosis
por: Cokol, Murat, et al.
Publicado: (2017) -
Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis
por: Ma, Shuyi, et al.
Publicado: (2019) -
Prediction of ultra-high-order antibiotic combinations based on pairwise interactions
por: Katzir, Itay, et al.
Publicado: (2019)