Cargando…

Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments

New antibiotic combinations are needed to improve the treatment of tuberculosis. Larkins-Ford and colleagues share a framework that combines in vitro pairwise drug response data and machine learning to rationally prioritize combinations for clinical development.(1)

Detalles Bibliográficos
Autores principales: Patterson, Sarah, Palmer, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512690/
https://www.ncbi.nlm.nih.gov/pubmed/36130481
http://dx.doi.org/10.1016/j.xcrm.2022.100745
_version_ 1784797886718935040
author Patterson, Sarah
Palmer, Adam
author_facet Patterson, Sarah
Palmer, Adam
author_sort Patterson, Sarah
collection PubMed
description New antibiotic combinations are needed to improve the treatment of tuberculosis. Larkins-Ford and colleagues share a framework that combines in vitro pairwise drug response data and machine learning to rationally prioritize combinations for clinical development.(1)
format Online
Article
Text
id pubmed-9512690
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95126902022-09-28 Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments Patterson, Sarah Palmer, Adam Cell Rep Med Preview New antibiotic combinations are needed to improve the treatment of tuberculosis. Larkins-Ford and colleagues share a framework that combines in vitro pairwise drug response data and machine learning to rationally prioritize combinations for clinical development.(1) Elsevier 2022-09-20 /pmc/articles/PMC9512690/ /pubmed/36130481 http://dx.doi.org/10.1016/j.xcrm.2022.100745 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Preview
Patterson, Sarah
Palmer, Adam
Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title_full Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title_fullStr Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title_full_unstemmed Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title_short Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
title_sort predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
topic Preview
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512690/
https://www.ncbi.nlm.nih.gov/pubmed/36130481
http://dx.doi.org/10.1016/j.xcrm.2022.100745
work_keys_str_mv AT pattersonsarah predictinginvivoactivityofcombinationtherapiesfrominvitrodrugpairsindiverseenvironments
AT palmeradam predictinginvivoactivityofcombinationtherapiesfrominvitrodrugpairsindiverseenvironments