Cargando…
Predicting in vivo activity of combination therapies from in vitro drug pairs in diverse environments
New antibiotic combinations are needed to improve the treatment of tuberculosis. Larkins-Ford and colleagues share a framework that combines in vitro pairwise drug response data and machine learning to rationally prioritize combinations for clinical development.(1)
Autores principales: | Patterson, Sarah, Palmer, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512690/ https://www.ncbi.nlm.nih.gov/pubmed/36130481 http://dx.doi.org/10.1016/j.xcrm.2022.100745 |
Ejemplares similares
-
Autologous cellular therapy for myeloma: Giving ex vivo expanded NK cells their due
por: Shapiro, Roman M., et al.
Publicado: (2022) -
Predicting drug toxicity at the intersection of informatics and biology: DTox builds a foundation
por: Sniatynski, Matthew J., et al.
Publicado: (2022) -
D'oh! Genes and Environment Cause Crohn's Disease
por: Todd, John A.
Publicado: (2010) -
WEE1i-ATRi combination therapy: a promising low-dose treatment for CCNE1-amplified gynecologic cancers
por: Goehring, Liana, et al.
Publicado: (2021) -
Sampling a wide swathe of primate genetic diversity
por: Eichler, Evan E.
Publicado: (2023)