Cargando…
Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation
PURPOSE: To compare liver MRI with AIR Recon Deep Learning™(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAÏVE) sequences, in terms of quantitative and qualitative image analysis and scanning time. MATERIAL AND METHODS: This prospective study include...
Autores principales: | Zerunian, Marta, Pucciarelli, Francesco, Caruso, Damiano, Polici, Michela, Masci, Benedetta, Guido, Gisella, De Santis, Domenico, Polverari, Daniele, Principessa, Daniele, Benvenga, Antonella, Iannicelli, Elsa, Laghi, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512724/ https://www.ncbi.nlm.nih.gov/pubmed/36070066 http://dx.doi.org/10.1007/s11547-022-01539-9 |
Ejemplares similares
-
CT-based radiomics for prediction of therapeutic response to Everolimus in metastatic neuroendocrine tumors
por: Caruso, Damiano, et al.
Publicado: (2022) -
Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients
por: Caruso, Damiano, et al.
Publicado: (2021) -
Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia
por: Caruso, Damiano, et al.
Publicado: (2021) -
Diagnostic performance of CT lung severity score and quantitative chest CT for stratification of COVID-19 patients
por: Caruso, Damiano, et al.
Publicado: (2022) -
Radiomics applications in cardiac imaging: a comprehensive review
por: Polidori, Tiziano, et al.
Publicado: (2023)