Cargando…

SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration

Our understanding of full-thickness endometrial regeneration after injury is limited by an incomplete molecular characterization of the cell populations responsible for the organ functions. To help fill this knowledge gap, we characterized 10,551 cells of full-thickness normal human uterine from two...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Bingbing, Li, Yu, Nie, Nanfang, Shen, Xilin, Jiang, Wei, Liu, Yanshan, Gong, Lin, An, Chengrui, Zhao, Kun, Yao, Xudong, Yuan, Chunhui, Hu, Jinghui, Zhao, Wei, Qian, Jianhua, Zou, XiaoHui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512788/
https://www.ncbi.nlm.nih.gov/pubmed/36163341
http://dx.doi.org/10.1038/s41421-022-00438-7
_version_ 1784797909239201792
author Wu, Bingbing
Li, Yu
Nie, Nanfang
Shen, Xilin
Jiang, Wei
Liu, Yanshan
Gong, Lin
An, Chengrui
Zhao, Kun
Yao, Xudong
Yuan, Chunhui
Hu, Jinghui
Zhao, Wei
Qian, Jianhua
Zou, XiaoHui
author_facet Wu, Bingbing
Li, Yu
Nie, Nanfang
Shen, Xilin
Jiang, Wei
Liu, Yanshan
Gong, Lin
An, Chengrui
Zhao, Kun
Yao, Xudong
Yuan, Chunhui
Hu, Jinghui
Zhao, Wei
Qian, Jianhua
Zou, XiaoHui
author_sort Wu, Bingbing
collection PubMed
description Our understanding of full-thickness endometrial regeneration after injury is limited by an incomplete molecular characterization of the cell populations responsible for the organ functions. To help fill this knowledge gap, we characterized 10,551 cells of full-thickness normal human uterine from two menstrual phases (proliferative and secretory phase) using unbiased single cell RNA-sequencing. We dissected cell heterogeneity of main cell types (epithelial, stromal, endothelial, and immune cells) of the full thickness uterine tissues, cell population architectures of human uterus cells across the menstrual cycle. We identified an SFRP4(+) stromal cell subpopulation that was highly enriched in the regenerative stage of the human endometria during the menstrual cycle, and the SFRP4(+) stromal cells could significantly enhance the proliferation of human endometrial epithelial organoid in vitro, and promote the regeneration of endometrial epithelial glands and full-thickness endometrial injury through IGF1 signaling pathway in vivo. Our cell atlas of full-thickness uterine tissues revealed the cellular heterogeneities, cell population architectures, and their cell–cell communications during the monthly regeneration of the human endometria, which provide insight into the biology of human endometrial regeneration and the development of regenerative medicine treatments against endometrial damage and intrauterine adhesion.
format Online
Article
Text
id pubmed-9512788
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Nature Singapore
record_format MEDLINE/PubMed
spelling pubmed-95127882022-09-28 SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration Wu, Bingbing Li, Yu Nie, Nanfang Shen, Xilin Jiang, Wei Liu, Yanshan Gong, Lin An, Chengrui Zhao, Kun Yao, Xudong Yuan, Chunhui Hu, Jinghui Zhao, Wei Qian, Jianhua Zou, XiaoHui Cell Discov Article Our understanding of full-thickness endometrial regeneration after injury is limited by an incomplete molecular characterization of the cell populations responsible for the organ functions. To help fill this knowledge gap, we characterized 10,551 cells of full-thickness normal human uterine from two menstrual phases (proliferative and secretory phase) using unbiased single cell RNA-sequencing. We dissected cell heterogeneity of main cell types (epithelial, stromal, endothelial, and immune cells) of the full thickness uterine tissues, cell population architectures of human uterus cells across the menstrual cycle. We identified an SFRP4(+) stromal cell subpopulation that was highly enriched in the regenerative stage of the human endometria during the menstrual cycle, and the SFRP4(+) stromal cells could significantly enhance the proliferation of human endometrial epithelial organoid in vitro, and promote the regeneration of endometrial epithelial glands and full-thickness endometrial injury through IGF1 signaling pathway in vivo. Our cell atlas of full-thickness uterine tissues revealed the cellular heterogeneities, cell population architectures, and their cell–cell communications during the monthly regeneration of the human endometria, which provide insight into the biology of human endometrial regeneration and the development of regenerative medicine treatments against endometrial damage and intrauterine adhesion. Springer Nature Singapore 2022-09-27 /pmc/articles/PMC9512788/ /pubmed/36163341 http://dx.doi.org/10.1038/s41421-022-00438-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wu, Bingbing
Li, Yu
Nie, Nanfang
Shen, Xilin
Jiang, Wei
Liu, Yanshan
Gong, Lin
An, Chengrui
Zhao, Kun
Yao, Xudong
Yuan, Chunhui
Hu, Jinghui
Zhao, Wei
Qian, Jianhua
Zou, XiaoHui
SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title_full SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title_fullStr SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title_full_unstemmed SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title_short SFRP4(+) stromal cell subpopulation with IGF1 signaling in human endometrial regeneration
title_sort sfrp4(+) stromal cell subpopulation with igf1 signaling in human endometrial regeneration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512788/
https://www.ncbi.nlm.nih.gov/pubmed/36163341
http://dx.doi.org/10.1038/s41421-022-00438-7
work_keys_str_mv AT wubingbing sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT liyu sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT nienanfang sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT shenxilin sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT jiangwei sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT liuyanshan sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT gonglin sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT anchengrui sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT zhaokun sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT yaoxudong sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT yuanchunhui sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT hujinghui sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT zhaowei sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT qianjianhua sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration
AT zouxiaohui sfrp4stromalcellsubpopulationwithigf1signalinginhumanendometrialregeneration