Cargando…
Experimental investigations on the growth of wall-attached bubble in total dissolved gas supersaturated water
Due to dam discharge, waterfalls, sudden increases in water temperature and oxygen production by photosynthesis, the total dissolved gas (TDG) in water is often supersaturated, which may have serious effects on aquatic ecology. When the atmospheric pressure is lower than the TDG pressure in water, t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512791/ https://www.ncbi.nlm.nih.gov/pubmed/36163243 http://dx.doi.org/10.1038/s41598-022-20291-8 |
Sumario: | Due to dam discharge, waterfalls, sudden increases in water temperature and oxygen production by photosynthesis, the total dissolved gas (TDG) in water is often supersaturated, which may have serious effects on aquatic ecology. When the atmospheric pressure is lower than the TDG pressure in water, the supersaturated dissolved gas in water will slowly release into air. Wall-attached bubbles were formed during the TDG release process. The generation and departure of wall-attached bubbles influence the release process of TDG in water. To simulate the growth period of the wall-attached bubbles under different pressures, a decompression experimental device was designed to record the supersaturated TDG release process. Based on experimental data and mathematical calculations, the quantitative relationship between the bubble growth rate and environmental pressure was obtained. The supersaturated TDG dissipation rate increases monotonically with increasing relative vacuum degree. Applied the calculation method about the wall-attached bubble growth rate, a formula of the supersaturated TDG adsorption flux was proposed, and a prediction method of the TDG release coefficient was established. The simulation results show that with the increasing relative vacuum degree, the TDG release coefficient increases correspondingly, and the adsorption from wall surface area can be obviously promoted. This study provides an important theoretical basis for the accurate calculation of the TDG release process and provides a scientific basis for the accurate prediction of the spatial and temporal distribution of supersaturated TDG under different pressure and solid wall conditions. |
---|