Cargando…
Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning
Disability progression in multiple sclerosis remains resistant to treatment. The absence of a suitable biomarker to allow for phase 2 clinical trials presents a high barrier for drug development. We propose to enable short proof-of-concept trials by increasing statistical power using a deep-learning...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512913/ https://www.ncbi.nlm.nih.gov/pubmed/36163349 http://dx.doi.org/10.1038/s41467-022-33269-x |
Sumario: | Disability progression in multiple sclerosis remains resistant to treatment. The absence of a suitable biomarker to allow for phase 2 clinical trials presents a high barrier for drug development. We propose to enable short proof-of-concept trials by increasing statistical power using a deep-learning predictive enrichment strategy. Specifically, a multi-headed multilayer perceptron is used to estimate the conditional average treatment effect (CATE) using baseline clinical and imaging features, and patients predicted to be most responsive are preferentially randomized into a trial. Leveraging data from six randomized clinical trials (n = 3,830), we first pre-trained the model on the subset of relapsing-remitting MS patients (n = 2,520), then fine-tuned it on a subset of primary progressive MS (PPMS) patients (n = 695). In a separate held-out test set of PPMS patients randomized to anti-CD20 antibodies or placebo (n = 297), the average treatment effect was larger for the 50% (HR, 0.492; 95% CI, 0.266-0.912; p = 0.0218) and 30% (HR, 0.361; 95% CI, 0.165-0.79; p = 0.008) predicted to be most responsive, compared to 0.743 (95% CI, 0.482-1.15; p = 0.179) for the entire group. The same model could also identify responders to laquinimod in another held-out test set of PPMS patients (n = 318). Finally, we show that using this model for predictive enrichment results in important increases in power. |
---|