Cargando…
An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations
Fractional order systems of delay differential equations are very advantageous in analyzing the dynamics of various fields such as population dynamics, neural networking, ecology, and physiology. The aim of this paper is to present an implicit numerical scheme along with its error analysis to solve...
Autor principal: | Kumar, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513021/ https://www.ncbi.nlm.nih.gov/pubmed/36185949 http://dx.doi.org/10.1007/s40819-022-01466-3 |
Ejemplares similares
-
A second-order numerical scheme for the time-fractional partial differential equations with a time delay
por: Choudhary, Renu, et al.
Publicado: (2022) -
A uniformly convergent numerical scheme for solving singularly perturbed differential equations with large spatial delay
por: Ejere, Ababi Hailu, et al.
Publicado: (2022) -
A New Numerical Approach for the Analysis of Variable Fractal and Fractional Order Differential Equations
por: Jena, P., et al.
Publicado: (2022) -
High-Order Compact Difference Scheme for the Numerical Solution of Time Fractional Heat Equations
por: Karatay, Ibrahim, et al.
Publicado: (2014) -
Accurate numerical scheme for singularly perturbed parabolic delay differential equation
por: Woldaregay, Mesfin Mekuria, et al.
Publicado: (2021)