Cargando…

Miniature optoelectronic compound eye camera

Inspired by insect compound eyes (CEs) that feature unique optical schemes for imaging, there has recently been growing interest in developing optoelectronic CE cameras with comparable size and functions. However, considering the mismatch between the complex 3D configuration of CEs and the planar na...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Zhi-Yong, Zhang, Yong-Lai, Pan, Chong, Dou, Jian-Yu, Li, Zhen-Ze, Tian, Zhen-Nan, Mao, Jiang-Wei, Chen, Qi-Dai, Sun, Hong-Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513083/
https://www.ncbi.nlm.nih.gov/pubmed/36163128
http://dx.doi.org/10.1038/s41467-022-33072-8
Descripción
Sumario:Inspired by insect compound eyes (CEs) that feature unique optical schemes for imaging, there has recently been growing interest in developing optoelectronic CE cameras with comparable size and functions. However, considering the mismatch between the complex 3D configuration of CEs and the planar nature of available imaging sensors, it is currently challenging to reach this end. Here, we report a paradigm in miniature optoelectronic integrated CE camera by manufacturing polymer CEs with 19~160 logarithmic profile ommatidia via femtosecond laser two-photon polymerization. In contrast to μ-CEs with spherical ommatidia that suffer from defocusing problems, the as-obtained μ-CEs with logarithmic ommatidia permit direct integration with a commercial CMOS detector, because the depth-of-field and focus range of all the logarithmic ommatidia are significantly increased. The optoelectronic integrated μ-CE camera enables large field-of-view imaging (90°), spatial position identification and sensitive trajectory monitoring of moving targets. Moreover, the miniature μ-CE camera can be integrated with a microfluidic chip and serves as an on-chip camera for real-time microorganisms monitoring. The insect-scale optoelectronic μ-CE camera provides a practical route for integrating well-developed planar imaging sensors with complex micro-optics elements, holding great promise for cutting-edge applications in endoscopy and robot vision.