Cargando…

Response to high-altitude triggers in seasonal asthmatics on and off inhaled corticosteroid treatment

BACKGROUND: Due to the effects of climate change, winter sport enthusiasts will be increasingly forced to stay at higher altitudes. High altitude (HA) environmental factors such as cold temperature, physical exertion, and hypoxia with subsequent hypocapnia due to hyperventilation have been shown to...

Descripción completa

Detalles Bibliográficos
Autores principales: Mertsch, Pontus, Götschke, Jeremias, Walter, Julia, Mümmler, Carlo, Ghiani, Alessandro, Schürmann, Ulrike, Kiefl, Rosemarie, Maria Huber, Rudolf, Behr, Jürgen, Kneidinger, Nikolaus, Milger, Katrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: World Allergy Organization 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513265/
https://www.ncbi.nlm.nih.gov/pubmed/36254181
http://dx.doi.org/10.1016/j.waojou.2022.100698
Descripción
Sumario:BACKGROUND: Due to the effects of climate change, winter sport enthusiasts will be increasingly forced to stay at higher altitudes. High altitude (HA) environmental factors such as cold temperature, physical exertion, and hypoxia with subsequent hypocapnia due to hyperventilation have been shown to induce bronchoconstriction. With bronchial asthma being highly prevalent, asthmatics also will be increasingly exposed to HA environment and might experience increasing symptoms. METHODS: We analysed the effects of HA factors at around 2600 m a.s.l. (metres above sea level) on lung function in mild seasonal asthmatics while they were routinely off (January) and on (March, after start of lowland pollen season) low-dose inhaled corticosteroid (ICS) treatment (n = 10), and matched healthy controls (n = 11). RESULTS: Without inhaled corticosteroid (ICS) treatment mean FEV1 in asthmatics was 230 ml lower after exercise at HA compared to low altitude (LA, p < 0.05), while in healthy controls there was no significant difference. This decrease was mainly induced by cold and exercise at HA. During ICS treatment, this decrease was prevented. Methacholine response was reduced at HA compared to LA. CONCLUSIONS: The decrease of FEV1 in response to a combination of hypoxia, cold, and exercise is prevented by ICS treatment in mild, seasonal asthmatics. However, the FEV1 response to high altitude factors was overall small.