Cargando…
A COVID-19 X-ray image classification model based on an enhanced convolutional neural network and hill climbing algorithms
The classification of medical images is significant among researchers and physicians for the early identification and clinical treatment of many disorders. Though, traditional classifiers require more time and effort for feature extraction and reduction from images. To overcome this problem, there i...
Autores principales: | Pradhan, Ashwini Kumar, Mishra, Debahuti, Das, Kaberi, Obaidat, Mohammad S., Kumar, Manoj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513301/ https://www.ncbi.nlm.nih.gov/pubmed/36185320 http://dx.doi.org/10.1007/s11042-022-13826-8 |
Ejemplares similares
-
Gene Regulatory Networks Reconstruction Using the Flooding-Pruning Hill-Climbing Algorithm
por: Xing, Linlin, et al.
Publicado: (2018) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
Progressive Learning Hill Climbing Algorithm with Energy-Map-Based Initialization for Image Reconstruction
por: Zhang, Yuhui, et al.
Publicado: (2023) -
Women healers and physicians: climbing a long hill
por: Bonner, Thomas N
Publicado: (1998) -
While climbing the hill, you think it’s possible
por: Martelletti, Paolo
Publicado: (2009)