Cargando…
In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography
Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purificatio...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513493/ https://www.ncbi.nlm.nih.gov/pubmed/36176904 http://dx.doi.org/10.1016/j.apsb.2022.04.010 |
_version_ | 1784798077002973184 |
---|---|
author | Gu, Yanqiu Wang, Rong Chen, Panpan Li, Shengnan Chai, Xinyi Chen, Chun Liu, Yue Cao, Yan Lv, Diya Hong, Zhanying Zhu, Zhenyu Chai, Yifeng Yuan, Yongfang Chen, Xiaofei |
author_facet | Gu, Yanqiu Wang, Rong Chen, Panpan Li, Shengnan Chai, Xinyi Chen, Chun Liu, Yue Cao, Yan Lv, Diya Hong, Zhanying Zhu, Zhenyu Chai, Yifeng Yuan, Yongfang Chen, Xiaofei |
author_sort | Gu, Yanqiu |
collection | PubMed |
description | Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with K(D) values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl(4)-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials. |
format | Online Article Text |
id | pubmed-9513493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95134932022-09-28 In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography Gu, Yanqiu Wang, Rong Chen, Panpan Li, Shengnan Chai, Xinyi Chen, Chun Liu, Yue Cao, Yan Lv, Diya Hong, Zhanying Zhu, Zhenyu Chai, Yifeng Yuan, Yongfang Chen, Xiaofei Acta Pharm Sin B Original Article Cell membrane affinity chromatography has been widely applied in membrane protein (MP)-targeted drug screening and interaction analysis. However, in current methods, the MP sources are derived from cell lines or recombinant protein expression, which are time-consuming for cell culture or purification, and also difficult to ensure the purity and consistent orientation of MPs in the chromatographic stationary phase. In this study, a novel in situ synthesis membrane protein affinity chromatography (iSMAC) method was developed utilizing cell-free protein expression (CFE) and covalent immobilized affinity chromatography, which achieved efficient in situ synthesis and unidirectional insertion of MPs into liposomes in the stationary phase. The advantages of iSMAC are: 1) There is no need to culture cells or prepare recombinant proteins; 2) Specific and purified MPs with stable and controllable content can be obtained within 2 h; 3) MPs maintain the transmembrane structure and a consistent orientation in the chromatographic stationary phase; 4) The flexible and personalized construction of cDNAs makes it possible to analyze drug binding sites. iSMAC was successfully applied to screen PDGFRβ inhibitors from Salvia miltiorrhiza and Schisandra chinensis. Micro columns prepared by in-situ synthesis maintain satisfactory analysis activity within 72 h. Two new PDGFRβ inhibitors, salvianolic acid B and gomisin D, were screened out with K(D) values of 13.44 and 7.39 μmol/L, respectively. In vitro experiments confirmed that the two compounds decreased α-SMA and collagen Ӏ mRNA levels raised by TGF-β in HSC-T6 cells through regulating the phosphorylation of p38, AKT and ERK. In vivo, Sal B could also attenuate CCl(4)-induced liver fibrosis by downregulating PDGFRβ downstream related protein levels. The iSMAC method can be applied to other general MPs, and provides a practical approach for the rapid preparation of MP-immobilized or other biological solid-phase materials. Elsevier 2022-09 2022-04-22 /pmc/articles/PMC9513493/ /pubmed/36176904 http://dx.doi.org/10.1016/j.apsb.2022.04.010 Text en © 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Gu, Yanqiu Wang, Rong Chen, Panpan Li, Shengnan Chai, Xinyi Chen, Chun Liu, Yue Cao, Yan Lv, Diya Hong, Zhanying Zhu, Zhenyu Chai, Yifeng Yuan, Yongfang Chen, Xiaofei In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title | In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title_full | In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title_fullStr | In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title_full_unstemmed | In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title_short | In situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
title_sort | in situ synthesis and unidirectional insertion of membrane proteins in liposome-immobilized silica stationary phase for rapid preparation of microaffinity chromatography |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513493/ https://www.ncbi.nlm.nih.gov/pubmed/36176904 http://dx.doi.org/10.1016/j.apsb.2022.04.010 |
work_keys_str_mv | AT guyanqiu insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT wangrong insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT chenpanpan insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT lishengnan insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT chaixinyi insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT chenchun insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT liuyue insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT caoyan insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT lvdiya insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT hongzhanying insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT zhuzhenyu insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT chaiyifeng insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT yuanyongfang insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography AT chenxiaofei insitusynthesisandunidirectionalinsertionofmembraneproteinsinliposomeimmobilizedsilicastationaryphaseforrapidpreparationofmicroaffinitychromatography |