Cargando…
Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes
In this study, a discrete element method (DEM) that can simulate particle plastic deformation, sintering, and electrode compaction of all-solid-state batteries was developed. The model can simulate elastic, plastic, and viscoelastic deformations that occur particularly in mold compaction processes....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513599/ https://www.ncbi.nlm.nih.gov/pubmed/36176333 http://dx.doi.org/10.1016/j.mex.2022.101857 |
_version_ | 1784798103097835520 |
---|---|
author | So, Magnus Inoue, Gen Park, Kayoung Nunoshita, Keita Ishikawa, Shota Tsuge, Yoshifumi |
author_facet | So, Magnus Inoue, Gen Park, Kayoung Nunoshita, Keita Ishikawa, Shota Tsuge, Yoshifumi |
author_sort | So, Magnus |
collection | PubMed |
description | In this study, a discrete element method (DEM) that can simulate particle plastic deformation, sintering, and electrode compaction of all-solid-state batteries was developed. The model can simulate elastic, plastic, and viscoelastic deformations that occur particularly in mold compaction processes. When the stress exceeds the yield strength of the material, inelastic deformation occurs, which can be described by either a plastic or viscoelastic response. We applied this model to simulate mold compaction of an All-Solid-State Battery (ASSB) electrode. This study implements the following novel features: • The model was derived from the Maxwell viscoelastic model and enabled the simulation of the elastic, plastic, and viscoelastic deformation of particles in a mold. • Particle deformation and sintering are modelled by the rate expression of the equilibrium overlap. • The area and spring factors are introduced to account for numerical issues when the porosity approaches zero. |
format | Online Article Text |
id | pubmed-9513599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95135992022-09-28 Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes So, Magnus Inoue, Gen Park, Kayoung Nunoshita, Keita Ishikawa, Shota Tsuge, Yoshifumi MethodsX Method Article In this study, a discrete element method (DEM) that can simulate particle plastic deformation, sintering, and electrode compaction of all-solid-state batteries was developed. The model can simulate elastic, plastic, and viscoelastic deformations that occur particularly in mold compaction processes. When the stress exceeds the yield strength of the material, inelastic deformation occurs, which can be described by either a plastic or viscoelastic response. We applied this model to simulate mold compaction of an All-Solid-State Battery (ASSB) electrode. This study implements the following novel features: • The model was derived from the Maxwell viscoelastic model and enabled the simulation of the elastic, plastic, and viscoelastic deformation of particles in a mold. • Particle deformation and sintering are modelled by the rate expression of the equilibrium overlap. • The area and spring factors are introduced to account for numerical issues when the porosity approaches zero. Elsevier 2022-09-13 /pmc/articles/PMC9513599/ /pubmed/36176333 http://dx.doi.org/10.1016/j.mex.2022.101857 Text en © 2022 The Author(s). Published by Elsevier B.V. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Method Article So, Magnus Inoue, Gen Park, Kayoung Nunoshita, Keita Ishikawa, Shota Tsuge, Yoshifumi Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title | Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title_full | Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title_fullStr | Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title_full_unstemmed | Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title_short | Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes |
title_sort | contact model for dem simulation of compaction and sintering of all-solid-state battery electrodes |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513599/ https://www.ncbi.nlm.nih.gov/pubmed/36176333 http://dx.doi.org/10.1016/j.mex.2022.101857 |
work_keys_str_mv | AT somagnus contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes AT inouegen contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes AT parkkayoung contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes AT nunoshitakeita contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes AT ishikawashota contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes AT tsugeyoshifumi contactmodelfordemsimulationofcompactionandsinteringofallsolidstatebatteryelectrodes |