Cargando…
Investigation of early neoplastic transformation and premalignant biology using genetically engineered organoid models
Organoid modeling is a powerful, robust and efficient technology faithfully preserving physiological and pathological characteristics of tissues of origin. Recently, substantial advances have been made in applying genetically engineered organoid models to study early tumorigenesis and premalignant b...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513696/ https://www.ncbi.nlm.nih.gov/pubmed/36212534 http://dx.doi.org/10.1016/j.csbj.2022.09.026 |
Sumario: | Organoid modeling is a powerful, robust and efficient technology faithfully preserving physiological and pathological characteristics of tissues of origin. Recently, substantial advances have been made in applying genetically engineered organoid models to study early tumorigenesis and premalignant biology. These efforts promise to identify novel avenues for early cancer detection, intervention and prevention. Here, we highlight significant advancements in the functional characterization of early genomic and epigenomic events during neoplastic evolution using organoid modeling, discuss the application of the lineage-tracing methodology in organoids to study cancer cells-of-origin, and review future opportunities for further development and improvement of organoid modeling of cancer precursors. |
---|