Cargando…
Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags
Rapid, direct and sensitive detection of foodborne bacteria in complex samples is still challenging. Here, we reported a universal surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) for highly sensitive detection of foodborne bacteria in food and environmental samples using whea...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513757/ https://www.ncbi.nlm.nih.gov/pubmed/36276007 http://dx.doi.org/10.1039/d2ra04735g |
_version_ | 1784798136403755008 |
---|---|
author | Tu, Zhijie Cheng, Siyun Dong, Hao Wang, Wenqi Yang, Xingsheng Gu, Bing Wang, Shengqi Wang, Chongwen |
author_facet | Tu, Zhijie Cheng, Siyun Dong, Hao Wang, Wenqi Yang, Xingsheng Gu, Bing Wang, Shengqi Wang, Chongwen |
author_sort | Tu, Zhijie |
collection | PubMed |
description | Rapid, direct and sensitive detection of foodborne bacteria in complex samples is still challenging. Here, we reported a universal surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) for highly sensitive detection of foodborne bacteria in food and environmental samples using wheat germ agglutinin (WGA)-modified Fe(3)O(4)@Au (Au@MNP-WGA) nanotags. The Au@MNP-WGA tag with numerous intraparticle hotspots was integrated into the LFA system for the first time, which can not only greatly improve the detection sensitivity through the dual amplification effect of magnetic enrichment and SERS enhancement but also achieve the broad-spectrum capture of multiple bacteria. In addition, monoclonal antibodies were separately immobilized onto the test line of different LFA strips to ensure the specific detection of different target pathogens. With this strategy, the proposed assay can achieve the universal and highly sensitive determination of three common foodborne bacteria, namely, Listeria monocytogenes, Campylobacter jejuni, and Staphylococcus aureus, with low detection limit (10 cells mL(−1)), short testing time (<35 min), and high reproducibility (RSD < 8.14%). Given its good stability and accuracy in complex samples, the Au@MNP-WGA-based SERS-LFA has great potential to be a powerful tool for the universal and on-site detection of different foodborne pathogens. |
format | Online Article Text |
id | pubmed-9513757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-95137572022-10-21 Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags Tu, Zhijie Cheng, Siyun Dong, Hao Wang, Wenqi Yang, Xingsheng Gu, Bing Wang, Shengqi Wang, Chongwen RSC Adv Chemistry Rapid, direct and sensitive detection of foodborne bacteria in complex samples is still challenging. Here, we reported a universal surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) for highly sensitive detection of foodborne bacteria in food and environmental samples using wheat germ agglutinin (WGA)-modified Fe(3)O(4)@Au (Au@MNP-WGA) nanotags. The Au@MNP-WGA tag with numerous intraparticle hotspots was integrated into the LFA system for the first time, which can not only greatly improve the detection sensitivity through the dual amplification effect of magnetic enrichment and SERS enhancement but also achieve the broad-spectrum capture of multiple bacteria. In addition, monoclonal antibodies were separately immobilized onto the test line of different LFA strips to ensure the specific detection of different target pathogens. With this strategy, the proposed assay can achieve the universal and highly sensitive determination of three common foodborne bacteria, namely, Listeria monocytogenes, Campylobacter jejuni, and Staphylococcus aureus, with low detection limit (10 cells mL(−1)), short testing time (<35 min), and high reproducibility (RSD < 8.14%). Given its good stability and accuracy in complex samples, the Au@MNP-WGA-based SERS-LFA has great potential to be a powerful tool for the universal and on-site detection of different foodborne pathogens. The Royal Society of Chemistry 2022-09-27 /pmc/articles/PMC9513757/ /pubmed/36276007 http://dx.doi.org/10.1039/d2ra04735g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Tu, Zhijie Cheng, Siyun Dong, Hao Wang, Wenqi Yang, Xingsheng Gu, Bing Wang, Shengqi Wang, Chongwen Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title | Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title_full | Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title_fullStr | Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title_full_unstemmed | Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title_short | Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags |
title_sort | universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic sers nanotags |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513757/ https://www.ncbi.nlm.nih.gov/pubmed/36276007 http://dx.doi.org/10.1039/d2ra04735g |
work_keys_str_mv | AT tuzhijie universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT chengsiyun universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT donghao universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT wangwenqi universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT yangxingsheng universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT gubing universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT wangshengqi universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags AT wangchongwen universalandultrasensitivedetectionoffoodbornebacteriaonalateralflowassaystripbyusingwheatgermagglutininmodifiedmagneticsersnanotags |