Cargando…
Evaluating Performance of EEG Data-Driven Machine Learning for Traumatic Brain Injury Classification
OBJECTIVES: Big data analytics can potentially benefit the assessment and management of complex neurological conditions by extracting information that is difficult to identify manually. In this study, we evaluated the performance of commonly used supervised machine learning algorithms in the classif...
Autores principales: | Vivaldi, Nicolas, Caiola, Michael, Solarana, Krystyna, Ye, Meijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513823/ https://www.ncbi.nlm.nih.gov/pubmed/33635785 http://dx.doi.org/10.1109/TBME.2021.3062502 |
Ejemplares similares
-
EEG classification of traumatic brain injury and stroke from a nonspecific population using neural networks
por: Caiola, Michael, et al.
Publicado: (2023) -
Investigation of Machine Learning Approaches for Traumatic Brain Injury Classification via EEG Assessment in Mice
por: Vishwanath, Manoj, et al.
Publicado: (2020) -
Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences
por: Ye, Meijun, et al.
Publicado: (2019) -
Longitudinal multimodal assessment of neurodegeneration and vascular remodeling correlated with signal degradation in chronic cortical silicon microelectrodes
por: Solarana, Krystyna, et al.
Publicado: (2020) -
Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning
por: Tritt, Andrew, et al.
Publicado: (2023)