Cargando…
Monotreme-specific conserved putative proteins derived from retroviral reverse transcriptase
Endogenous retroviruses (ERVs) have played an essential role in the evolution of mammals. ERV-derived genes are reported in the therians, many of which are involved in placental development; however, the contribution of the ERV-derived genes in monotremes, which are oviparous mammals, remains to be...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514029/ https://www.ncbi.nlm.nih.gov/pubmed/36176487 http://dx.doi.org/10.1093/ve/veac084 |
Sumario: | Endogenous retroviruses (ERVs) have played an essential role in the evolution of mammals. ERV-derived genes are reported in the therians, many of which are involved in placental development; however, the contribution of the ERV-derived genes in monotremes, which are oviparous mammals, remains to be uncovered. Here, we conducted a comprehensive search for possible ERV-derived genes in platypus and echidna genomes and identified three reverse transcriptase-like genes named RTOM1, RTOM2, and RTOM3 clustered in the GRIP2 intron. Comparative genomic analyses revealed that RTOM1, RTOM2, and RTOM3 are strongly conserved and are under purifying selection between these species. These could be generated by tandem duplications before the divergence of platypus and echidna. All RTOM transcripts were specifically expressed in the testis, possibly suggesting their physiological importance. This is the first study reporting monotreme-specific de novo gene candidates derived from ERVs, which provides new insights into the unique evolution of monotremes. |
---|