Cargando…
Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis
BACKGROUND: Coronary artery disease (CAD) is a leading cause of death worldwide, and the diagnostic process comprises of invasive testing with coronary angiography and non-invasive imaging, in addition to history, clinical examination, and electrocardiography (ECG). A highly accurate assessment of C...
Autores principales: | Alskaf, Ebraham, Dutta, Utkarsh, Scannell, Cian M., Chiribiri, Amedeo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514037/ https://www.ncbi.nlm.nih.gov/pubmed/36187893 http://dx.doi.org/10.1016/j.imu.2022.101055 |
Ejemplares similares
-
Deep learning applications in coronary anatomy imaging: a systematic review and meta-analysis
por: Alskaf, Ebraham, et al.
Publicado: (2022) -
AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance
por: Scannell, Cian M, et al.
Publicado: (2022) -
Deep‐Learning‐Based Preprocessing for Quantitative Myocardial Perfusion MRI
por: Scannell, Cian M., et al.
Publicado: (2019) -
Hierarchical Bayesian myocardial perfusion quantification
por: Scannell, Cian M., et al.
Publicado: (2020) -
Physics-informed neural networks for myocardial perfusion MRI quantification
por: van Herten, Rudolf L.M., et al.
Publicado: (2022)