Cargando…
High-throughput analysis of anti-poliovirus neutralization antibody titre in human serum by the pseudovirus neutralization test
To monitor vulnerability of countries to poliovirus (PV) outbreaks, serosurveillance of anti-PV neutralization antibody is conducted by conventional PV neutralization test (cPNT), which uses live PV strains. We previously developed a pseudovirus PV neutralization test (pPNT) as an alternative to cPN...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514167/ https://www.ncbi.nlm.nih.gov/pubmed/36167892 http://dx.doi.org/10.1038/s41598-022-20544-6 |
Sumario: | To monitor vulnerability of countries to poliovirus (PV) outbreaks, serosurveillance of anti-PV neutralization antibody is conducted by conventional PV neutralization test (cPNT), which uses live PV strains. We previously developed a pseudovirus PV neutralization test (pPNT) as an alternative to cPNT, which uses PV pseudovirus that expresses luciferase as a reporter in the infection without producing infectious PV. In the present study, we established a high-throughput pPNT (HTpPNT) for a large-scale serosurveillance. The HTpPNT system was evaluated with 600 human serum samples obtained from a broad range of age groups of healthy volunteers (ages of 0–89 years). HTpPNT showed high correlation with cPNT (R(2) for anti-type 1, 2, and 3 PV neutralization antibody titres are 0.90, 0.84, and 0.90, respectively). By using HTpPNT, we analyzed relative neutralizing antibody titre of the sera against a type 1 PV wild-type strain (Mahoney strain) to that against the type 1 Sabin strain. As a result, a correlation between the age (≥ 60 years) and the relative neutralizing antibody titre was observed (n = 15–16, P = 0.0000023–0.041), while the types of PV vaccine (i.e., oral PV vaccine and Sabin strain-based IPV) had no effect. HTpPNT would serve as a useful alternative to cPNT in a large-scale serosurveillance. |
---|