Cargando…

Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification

Out of the numerous types of Medical Imaging modalities available, radiography stands out a bit more than others due to its capabilities of diagnosing diseases and conditions, including life-threatening conditions. Its affordability is another main reason for its prevalence. Chest Radiography holds...

Descripción completa

Detalles Bibliográficos
Autores principales: Rammuni Silva, Ravidu Suien, Fernando, Pumudu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514177/
https://www.ncbi.nlm.nih.gov/pubmed/36188757
http://dx.doi.org/10.1007/s42979-022-01390-9
Descripción
Sumario:Out of the numerous types of Medical Imaging modalities available, radiography stands out a bit more than others due to its capabilities of diagnosing diseases and conditions, including life-threatening conditions. Its affordability is another main reason for its prevalence. Chest Radiography holds even higher importance, as it focuses a critical area of the human body. However, interpreting a Chest Radiography image can be challenging and usually done by an experienced Radiologist for accurate results. There are two main issues related to this. One is that in some countries, experienced Radiologists are scarce. The other issue is that the inevitability of human errors in diagnoses. Researchers attempt to use Artificial Intelligence to address these two issues. Most of the existing work incorporates Convolutional Neural Networks for this purpose. This paper presents a novel way of parallelizing multiple architectures of Convolutional Neural Networks focusing on Chest X-ray classification. The paper further presents a comprehensive evaluation of the existing architectures with the parallelized results of them using our method. We used four large-scale datasets, including a non-medical one, for the evaluation of our models. We managed to achieve better accuracy for 9 out 13 and 11 out of 14 labels on our two main evaluation datasets. The paper concludes by presenting the limitations and future improvements possible for the system.