Cargando…
Extracting Chinese events with a joint label space model
The task of event extraction consists of three subtasks namely entity recognition, trigger identification and argument role classification. Recent work tackles these subtasks jointly with the method of multi-task learning for better extraction performance. Despite being effective, existing attempts...
Autores principales: | Huang, Wenzhi, Zhang, Junchi, Ji, Donghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9514653/ https://www.ncbi.nlm.nih.gov/pubmed/36166421 http://dx.doi.org/10.1371/journal.pone.0272353 |
Ejemplares similares
-
A transition-based neural framework for Chinese information extraction
por: Huang, Wenzhi, et al.
Publicado: (2020) -
Correction: A transition-based neural framework for Chinese information extraction
por: Huang, Wenzhi, et al.
Publicado: (2021) -
A message-passing multi-task architecture for the implicit event and polarity detection
por: Xiang, Chunli, et al.
Publicado: (2021) -
A neural joint model for entity and relation extraction from biomedical text
por: Li, Fei, et al.
Publicado: (2017) -
Combining joint models for biomedical event extraction
por: McClosky, David, et al.
Publicado: (2012)