Cargando…
Tackling the class imbalance problem of deep learning-based head and neck organ segmentation
PURPOSE: The segmentation of organs at risk (OAR) is a required precondition for the cancer treatment with image- guided radiation therapy. The automation of the segmentation task is therefore of high clinical relevance. Deep learning (DL)-based medical image segmentation is currently the most succe...
Autores principales: | Tappeiner, Elias, Welk, Martin, Schubert, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515025/ https://www.ncbi.nlm.nih.gov/pubmed/35578086 http://dx.doi.org/10.1007/s11548-022-02649-5 |
Ejemplares similares
-
Strategies for tackling the class imbalance problem of oropharyngeal primary tumor segmentation on magnetic resonance imaging
por: Rodríguez Outeiral, Roque, et al.
Publicado: (2022) -
Deep-Learning-Based Automatic Segmentation of Head and Neck Organs for Radiation Therapy in Dogs
por: Park, Jeongsu, et al.
Publicado: (2021) -
Deep Learning-Based Segmentation of Head and Neck Organs-at-Risk with Clinical Partially Labeled Data
por: Cubero, Lucía, et al.
Publicado: (2022) -
PCG-net: feature adaptive deep learning for automated head and neck organs-at-risk segmentation
por: Luan, Shunyao, et al.
Publicado: (2023) -
Challenges and chances for deep-learning based target and organ at risk segmentation in radiotherapy of head and neck cancer
por: Nijkamp, Jasper
Publicado: (2022)