Cargando…

Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis

The voltage-gated potassium channel AKT1 is responsible for primary K(+) uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yaming, Yu, Miao, Jia, Yutian, Yang, Fan, Zhang, Yanming, Xu, Xia, Li, Xiaomin, Lei, Jianlin, Wang, Yi, Yang, Guanghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515098/
https://www.ncbi.nlm.nih.gov/pubmed/36167696
http://dx.doi.org/10.1038/s41467-022-33420-8
Descripción
Sumario:The voltage-gated potassium channel AKT1 is responsible for primary K(+) uptake in Arabidopsis roots. AKT1 is functionally activated through phosphorylation and negatively regulated by a potassium channel α-subunit AtKC1. However, the molecular basis for the modulation mechanism remains unclear. Here we report the structures of AKT1, phosphorylated-AKT1, a constitutively-active variant, and AKT1-AtKC1 complex. AKT1 is assembled in 2-fold symmetry at the cytoplasmic domain. Such organization appears to sterically hinder the reorientation of C-linkers during ion permeation. Phosphorylated-AKT1 adopts an alternate 4-fold symmetric conformation at cytoplasmic domain, which indicates conformational changes associated with symmetry switch during channel activation. To corroborate this finding, we perform structure-guided mutagenesis to disrupt the dimeric interface and identify a constitutively-active variant Asp379Ala mediates K(+) permeation independently of phosphorylation. This variant predominantly adopts a 4-fold symmetric conformation. Furthermore, the AKT1-AtKC1 complex assembles in 2-fold symmetry. Together, our work reveals structural insight into the regulatory mechanism for AKT1.