Cargando…
Transformer and group parallel axial attention co-encoder for medical image segmentation
U-Net has become baseline standard in the medical image segmentation tasks, but it has limitations in explicitly modeling long-term dependencies. Transformer has the ability to capture long-term relevance through its internal self-attention. However, Transformer is committed to modeling the correlat...
Autores principales: | Li, Chaoqun, Wang, Liejun, Li, Yongming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515122/ https://www.ncbi.nlm.nih.gov/pubmed/36167743 http://dx.doi.org/10.1038/s41598-022-20440-z |
Ejemplares similares
-
HEA-Net: Attention and MLP Hybrid Encoder Architecture for Medical Image Segmentation
por: An, Lijing, et al.
Publicado: (2022) -
FAC-Net: Feedback Attention Network Based on Context Encoder Network for Skin Lesion Segmentation
por: Dong, Yuying, et al.
Publicado: (2021) -
Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
por: Cheng, Zhikun, et al.
Publicado: (2023) -
Dilated transformer: residual axial attention for breast ultrasound image segmentation
por: Shen, Xiaoyan, et al.
Publicado: (2022) -
HMT-Net: Transformer and MLP Hybrid Encoder for Skin Disease Segmentation
por: Yang, Sen, et al.
Publicado: (2023)