Cargando…
Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predict...
Autores principales: | Tang, Yi-Ching, Powell, Reid T., Gottlieb, Assaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515168/ https://www.ncbi.nlm.nih.gov/pubmed/36168036 http://dx.doi.org/10.1038/s41598-022-20646-1 |
Ejemplares similares
-
Explainable drug sensitivity prediction through cancer pathway enrichment
por: Tang, Yi-Ching, et al.
Publicado: (2021) -
Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts
por: Kuwata, Takeshi, et al.
Publicado: (2019) -
Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts
por: Bhadury, Joydeep, et al.
Publicado: (2016) -
Optimizing Drug Response Study Design in Patient-Derived Tumor
Xenografts
por: Weiss, Jessica, et al.
Publicado: (2022) -
Challenges in Stratifying the Molecular Variability of Patient-Derived Colon Tumor Xenografts
por: Cybulska, Magdalena, et al.
Publicado: (2018)